Extensible Business Reporting Language (XBRL) 2.1
2003-07-31 Update to the Public Working Draft of 2003-04-23

This version:

- XBRL-WD-2003-07-31.zip

with separate provision of XML Schemas described herein. All components, along with non-
normative samples and certain schemas are available in a single Zip format archive:

- XBRL-WD-2003-07-31.zip

Editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Contact</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillip Engel</td>
<td>philippengel@kpmg.com</td>
<td>KPMG LLP</td>
</tr>
<tr>
<td>Walter Hamscher ¹</td>
<td>walter@hamscher.com</td>
<td>Standard Advantage</td>
</tr>
<tr>
<td>Geoffrey Shuetrim</td>
<td>gshuetrim@kpmg.com.au</td>
<td>KPMG LLP</td>
</tr>
<tr>
<td>David van Kannon</td>
<td>dvunkannon@kpmg.com</td>
<td>KPMG LLP</td>
</tr>
<tr>
<td>Hugh Wallis</td>
<td>hugh_wallis@hyperion.com</td>
<td>Hyperion Solutions Corporation</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Contact</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Hoffman</td>
<td>charleshoffman@olywa.net</td>
<td>UBmatrix</td>
</tr>
<tr>
<td>Campbell Pryde</td>
<td>cpryde@kpmg.com</td>
<td>KPMG LLP</td>
</tr>
</tbody>
</table>

Status of this document

This document is an XBRL International Internal update to the Public Working Draft that was published on 2003-04-23. It contains all updates that have been approved by the Specification Working Group up to and including 2003-07-31. This document is a Public Working Draft. The process leading to the publication of this specification as a final recommendation of XBRL International is shown in the appendix on the last page. Comments should be directed to the editors. Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

While excerpts from XBRL schemas are given throughout this document the complete versions of the schemas are available as separate .xsd files from www.xbrl.org, the XBRL International web site.

Abstract

XBRL is the specification for the eXtensible Business Reporting Language. XBRL allows software vendors, programmers, intermediaries in the preparation and distribution process and end users who adopt it as a specification to enhance the creation, exchange, and comparison of business reporting information. Business reporting includes, but is not limited to, financial statements, financial information, non-financial information, general ledger transactions and regulatory filings, such as annual and quarterly reports.

This document defines XML elements and attributes that can be used to express information used in the creation, exchange, and comparison tasks of business reporting. XBRL consists of a core language of XML elements and attributes used in XBRL instances as well as a language used to define new elements and taxonomies of elements referred to in XBRL instances, and to express constraints among the contents of elements in those XBRL instances.

¹ Walter Hamscher is a consultant to PricewaterhouseCoopers LLP.
Table of contents

Editors .. 1
Contributors .. 1
Status of this document .. 1
Abstract .. 1
Table of contents ... 2
List of tables ... 5
List of examples ... 5

1 Introduction

1.1 Documentation conventions .. 7
1.2 Purpose .. 7
1.3 Relationship to other work ... 8
1.4 Terminology .. 8
1.5 Levels of conformance ... 12

2 Changes from the previous published version

2.1 Changes in XBRL instances .. 13
2.2 Changes in XBRL taxonomies .. 13

3 XBRL framework

3.1 Overview of XBRL taxonomies .. 14
3.2 Overview of XBRL instances ... 15
3.3 Data integrity and confidentiality ... 16
3.4 Validation ... 17
3.5 XLink in XBRL

3.5.1 Simple links.. 17
3.5.1.1 The xlink:type attribute on simple links ... 18
3.5.1.2 The xlink:href attribute on simple links .. 18
3.5.1.3 The xlink:role attribute on simple links (optional) ... 18
3.5.1.4 The xlink:arcrole attribute on simple links (optional) .. 18
3.5.2 Linkbases.. 19
3.5.2.1 The id attribute on the xbrl element ... 19
3.5.2.2 The xml:base attribute on the linkbase element (optional) ... 20
3.5.2.3 Documentation elements in extended links (optional) ... 20
3.5.3 Extended links ... 20
3.5.3.1 The id attribute (optional) ... 21
3.5.3.2 The xlink:type attribute on extended links .. 21
3.5.3.3 The xlink:role attribute on extended links (optional) .. 22
3.5.3.4 Documentation elements in extended links (optional) ... 22
3.5.3.5 Titles in extended links (optional) .. 22
3.5.3.6 Locators ... 23
3.5.3.7 Resources ... 24
3.5.3.8 Arcs ... 25

4 XBRL instances (the xbrl element)

4.1.1 The id attribute on the xbrl element (optional) .. 32
4.1.2 The xml:base attribute on the xbrl element (optional) ... 32
4.2 The schemaRef element

4.2.1 The xlink:type attribute on schemaRef elements ... 32
4.2.2 The xlink:href attribute on schemaRef elements ... 32
4.2.3 The xlink:arcrole attribute on schemaRef elements (optional) 32
4.2.4 The xlink:role attribute on schemaRef elements (optional) ... 32
4.3 The linkbaseRef element in XBRL instances

4.3.1 The xlink:type attribute on linkbaseRef elements .. 33
4.3.2 The xlink:href attribute on linkbaseRef elements ... 33
4.3.3 The xlink:arcrole attribute ... 34
4.3.4 The xlink:role attribute on linkbaseRef elements (optional) .. 34
4.4 Items

4.4.1 Usage of precision and decimals attributes ... 37
4.4.2 The precision attribute (optional) ... 37
4.4.3 The decimals attribute (optional) ..38
4.4.4 Inferring precision from decimals ...39
4.4.5 Definitions pertaining to accuracy ...40
 4.4.5.1 "Correct to n Significant Figures", "Rounding" and "Truncation"40
 4.4.5.2 "Correct to n Decimal Places" ..41
4.5 The context element
 4.5.1 The id attribute ...42
 4.5.2 The period element ...42
 4.5.3 The entity element ...43
 4.5.3.1 identifier ..44
 4.5.3.2 The segment element (optional) ..45
 4.5.4 The scenario element (optional) ...46
4.6 The unit element
 4.6.1 The id attribute ...48
 4.6.2 The measure element ..49
 4.6.3 The divide element ...49
 4.6.4 The unitNumerator and unitDenominator elements49
4.7 Tuples
4.8 Equality predicates relevant to detecting duplicate items and tuples53
4.9 Footnotes
 4.9.1 The footnoteLink element ..58
 4.9.1.1 Locators in footnoteLink elements ...60
 4.9.1.2 The footnote element ..60
 4.9.1.3 The footnoteArc element ..61
5 XBRL Taxonomies ...61
5.1 Taxonomy schemas
 5.1.1 Concept definitions ...63
 5.1.1.1 The periodType attribute ..63
 5.1.1.2 The balance attribute (optional) ..64
 5.1.1.3 Item data types ...66
 5.1.2 The linkbaseRef element ..69
 5.1.3 The roleType element ..69
 5.1.3.1 The roleType element ...70
 5.1.3.2 The name attribute on roleType elements70
 5.1.3.3 The usedOn attribute on roleType elements70
 5.1.3.4 The definition element on roleType elements (optional)71
 5.1.4 The arcroleType element ..71
 5.1.4.1 The arcroleType element ..72
 5.1.4.2 The name attribute on arcroleType elements72
 5.1.4.3 The usedOn attribute on arcroleType elements72
 5.1.4.4 The cyclesAllowed attribute ...73
 5.1.4.5 The definition element on arcroleType elements (optional)73
5.2 Taxonomy linkbases
 5.2.1 The linkbase element ...77
 5.2.2 The labelLink element ...77
 5.2.2.1 Locators in labelLink elements ...78
 5.2.2.2 The label element ..78
 5.2.2.3 The labelArc element ..81
 5.2.3 The referenceLink element ..81
 5.2.3.1 Locators in referenceLink elements ...82
 5.2.3.2 The reference element ..82
 5.2.3.3 The referenceArc element ..85
 5.2.4 The presentationLink element ..86
 5.2.4.1 Locators in presentationLink elements ..86
 5.2.4.2 The presentationArc element ...86
 5.2.5 The calculationLink element ..88
 5.2.5.1 Locators in calculationLink elements ..88
 5.2.5.2 The calculationArc element ...89
 5.2.6 The definitionLink element ...92
5.2.6.1 Locators in calculationLink elements ... 92
5.2.6.2 The definitionArc element ... 93

6 References ... 96

A. Schemas ... 98
 xbrl-instance-2003-07-31.xsd (normative) 98
 xbrl-linkbase-2003-07-31.xsd (normative) 109
 xbrl-role-2003-07-31.xsd (normative) 115
 xbrl-ref-2003-07-31.xsd (normative) 121
 xml-2001-03.xsd (normative) 121
 xlink.xsd (normative) 123
 xl.xsd (normative) 126

B. Document history and acknowledgments (non-normative) 131
C. Intellectual property status (non-normative) ... 137
D. Approval process (non-normative) ... 138
List of examples

Example 1. A skeletal linkbase ... 19
Example 2. Correct use of arcs according to [XLINK] 27
Example 3. Using arc prohibition to insert a new sub-total into a calculation network 29
Example 4. Use of xbrl as the root element ... 31
Example 5. A numeric fact with three significant digit 36
Example 6. A non-numeric item .. 36
Example 7. Precision and lexical representation ... 37
Example 8. Decimals and lexical representation ... 38
Example 9. Lexical representation, precision and decimals 40
Example 10. Rounding .. 40
Example 11. Correct to n decimal places .. 41
Example 12. IDs ... 42
Example 13. Entity identifiers ... 44
Example 14. Using the segment element ... 45
Example 15. Use of the scenario element ... 46
Example 16. Use of the unit element .. 49
Example 17. Simple and complex unit of measure comparison 50
Example 18. Defining a tuple as a restriction of tupleType 52
Example 19. Elements describing business properties held and disposed 52
Example 20. Hierarchy in a tuple .. 53
Example 21. Duplicate items, tuples and contexts .. 56
Example 22. Predicates for detecting duplicates ... 57
Example 23. A footnote in an XBRL instance ... 59
Example 24. A skeletal taxonomy schema showing linkbase references 62
Example 25. Typical element definitions in a taxonomy schema 63
Example 26. Instant and duration concept definitions 64
Example 27. Using the balance element to indicate normal debit and credit balances 65
Example 28. A concept appearing with positive and negative values in an XBRL instance ... 65
Example 29. Deriving an enumerated item type ... 67
Example 30. Representing fractions .. 67
Example 31. Defining a new role type .. 69
Example 32. Defining a new arc role value .. 69
Example 33. Types of cycles .. 71
Example 34. Elements of a financial reporting taxonomy 75
Example 35. Hierarchy in a calculation linkbase .. 75
Example 36. Hierarchy of general-special arcs in a definition linkbase 76
Example 37. Hierarchy in a presentation linkbase ... 77
Example 38. Label resource ... 79
Example 39. Arc between a concept and one of its labels 81
Example 40. Sample values of xlink:role for several referenceLink elements 82
Example 41. Arc between a concept and supporting references 83

List of tables

Table 1. Terms and definitions... 8
Table 2. Roles in the linkbaseRef element .. 34
Table 3. Unit restrictions based on item types ... 49
Table 4. Equality predicate definitions .. 53
Table 5. Correct signage in an XBRL instance ... 65
Table 6. Constraints among the balance attribute and calculation arc weights 65
Table 7. Defined item types ... 66
Table 8. Standard label role attribute values .. 79
Table 9. Reference role attribute values ... 84
1 Introduction

XBRL is the specification for the eXtensible Business Reporting Language. XBRL allows software vendors, programmers and end users to enhance the creation, exchange, and comparison of business reporting information. Business reporting includes, but is not limited to, financial statements, financial information, non-financial information and regulatory filings such as annual and quarterly financial statements.

This document defines XML elements and attributes that can be used to express information used in the creation, exchange and comparison tasks of business reporting. XBRL consists of a core language of XML elements and attributes used in document instances. Abstract elements in this core language are replaced by concrete elements in XBRL instances. These abstract elements are defined in taxonomies. XBRL consists of a language used to define new elements and taxonomies of elements referred to in document instances and the relationships between taxonomy elements.

All parts of this document not explicitly identified as non-normative are normative. In the event of any conflict between the English language text of this document and/or schema fragments included in the main body of this document and the normative schemas contained herein, the schemas SHALL prevail. The schemas and other documents published separately and contemporaneously with the specification are non-normative and are provided for the convenience of users of this specification.

1.1 Documentation conventions

The following highlighting is used to present non-normative technical material in this document:

The following highlighting is used for non-normative commentary in this document:

Non-normative editorial comments are denoted by indentation and the prefix "Note":

NOTE: This is a non-normative editorial comment.

Italics are used for rhetorical emphasis only and do not convey any special normative meaning.

1.2 Purpose

The XBRL specification is intended to benefit four categories of users: 1) business information preparers, 2) intermediaries in the preparation and distribution process, 3) users of this information and 4) the vendors who supply software and services to one or more of these three types of user. The overall intention is to balance the needs of these groups creating a standard that benefits to all four groups.

The needs of end users of business information have generally taken precedence over other needs when it has been necessary to make specification design decisions that might benefit one community at the expense of another.

A major goal of XBRL is to improve the business report product. It facilitates current practice; it does not change or set new accounting or other business domain standards. However, XBRL should facilitate changes in reporting over the long term.

XBRL provides users with a standard format in which to prepare reports that can subsequently be presented in a variety of ways. XBRL provides users with a standard format in which information can be exchanged between different software applications. XBRL permits the automated, efficient and reliable extraction of information by software applications. XBRL facilitates the automated comparison of financial and other business information, accounting
policies, notes to financial statements between companies, and other items about which users may wish to make comparisons that today are performed manually.

XBRL facilitates "drill down" to detailed information, authoritative literature, audit and accounting working papers. XBRL includes specifications for as much information about the reporting entity as may be relevant and useful to the process of financial and business reporting and the interpretation of the information.

XBRL supports international accounting and other standards as well as languages other than the various dialects of English.

XBRL is extensible by any adopter to increase its breadth of applicability, and its design encourages reuse via incremental extensions. For example, XBRL specifies the format of information that would reasonably be expected in an electronic format for securities filings by public entities. XBRL facilitates business reporting in general, and is not limited to financial and accounting reporting.

XBRL focuses on the genuine information needs of the user and adheres to the spirit of reporting standards that avoid the use of bold, italics, and other stylistic techniques that may distract from a true and fair presentation of results. Therefore, there is no functional requirement that XBRL documents support any particular text formatting conventions.

The purpose of XBRL instances is the transmission of a set of facts. There is no constraint on how much or how little they contain. A single fact can form the entire content of a valid XBRL document, for example, when the information being conveyed is limited to what "Cost of Goods Sold" was last quarter or an XBRL document can be a database dump, containing huge numbers of facts. It can also be anything in between. This provides a great deal of flexibility and is meant specifically to achieve the goals of allowing XBRL to be reused within other specifications and for application software needing to extract data from otherwise arbitrarily formatted documents. It is expected that, for most uses of XBRL, many XML XBRL instances will be created that consist almost exclusively of facts.

1.3 Relationship to other work

XBRL uses several World Wide Web Consortium (W3C) recommendations, XML 1.0, XML Namespaces, and refers directly to XML Linking. It also relies extensively on the XML Schema recommendation.

Discussions have taken place with other bodies issuing XML specifications in the financial arena, including OAG (Open Applications Group), OMG (Object Management Group), FpML (Financial Products Markup Language), finXML (Financial XML), OFX/IFX (Open Financial Exchange) and ebXML (e-Business XML). The scope of XBRL does not include transaction protocols. It includes financial reporting and contemplates extensive detail in the representation and use of accounting conventions, which distinguishes it from these other efforts.

1.4 Terminology

The terminology used in XBRL frequently overlaps with terminology from other fields, and the following list is provided to reduce the possibility of ambiguity and confusion (see also the references in section 6 below).

Table 1. Terms and definitions.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>abstract element</td>
<td>An element for which the attribute abstract in its XML schema declaration has the value "true" and which, therefore, cannot be used in an XBRL instance.</td>
</tr>
<tr>
<td>alias concept</td>
<td>The concept at the "to" end of a definition arc with arc role http://www.xbrl.org/2003/role#essence-alias.</td>
</tr>
<tr>
<td>alias item</td>
<td>An item in an instance whose element is an alias concept.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>arc</td>
<td>Arcs relate concepts to each other by associating their locators. Arcs also associate concepts with resources by connecting the concept locators to the resources themselves. Arcs are also used to connect fact locators to footnote resources in footnote extended links. Arcs have a set of attributes that document the nature of the relationships expressed in extended links. Importantly all arcs have an xlink:arcrole attribute that determines the semantics of the relationship they describe.</td>
</tr>
<tr>
<td>c-equal</td>
<td>Context-equal: Items or sets or sequences of items having the same item type in s-equal contexts. For a formal definition, see Section 4.8 below.</td>
</tr>
<tr>
<td>child, parent, sibling, grandparent, uncle, ancestor</td>
<td>Relationships among elements in an XBRL instance: using the terminology of [XPATH], for any element (E), another element (F) is its:</td>
</tr>
<tr>
<td></td>
<td>- child if and only if (F) appears on the child axis of (E)</td>
</tr>
<tr>
<td></td>
<td>- parent if and only if (F) appears on the parent axis of (E)</td>
</tr>
<tr>
<td></td>
<td>- sibling if and only if (F) appears on the child axis of the parent of (E) and is not (E) itself</td>
</tr>
<tr>
<td></td>
<td>- grandparent if and only if (F) is the parent of the parent of (E)</td>
</tr>
<tr>
<td></td>
<td>- uncle if and only if (F) is a sibling of the parent of (E)</td>
</tr>
<tr>
<td></td>
<td>- ancestor if and only if (F) appears on the ancestor axis of (E)</td>
</tr>
<tr>
<td>concept</td>
<td>Concepts are defined in two equivalent ways. In a syntactic sense, a concept is an XML Schema element definition, defining the element to be in the item element substitution group or in the tuple element substitution group. At a semantic level, a concept is a definition of kind of fact that can be reported about the activities or nature of a business activity.</td>
</tr>
<tr>
<td>concrete element</td>
<td>An element for which the attribute abstract in its XML schema declaration has the value "false" and which, therefore, may appear in an XML instance.</td>
</tr>
<tr>
<td>context</td>
<td>Contexts are XML fragments that occur as children of the root element in XBRL instances. They document the entity, the period and the scenario that gives appropriate context for understanding the values of items. Each context element is only capable of documenting a single combination of entity, period and scenario.</td>
</tr>
<tr>
<td>Discoverable Taxonomy Set (DTS)</td>
<td>A DTS is a collection of taxonomy schemas and linkbases. The bounds of a DTS are such that the DTS includes all taxonomy schemas and linkbases that can be discovered by following links or references in the taxonomy schemas and linkbases included in the DTS. At least one taxonomy schema in a DTS must import the xbrl-instance-2003-07-31.xsd (normative) schema. See Section 3 for details on the discovery process.</td>
</tr>
<tr>
<td>duplicate items</td>
<td>Two items that are p-equal and c-equal: two occurrences, in an XBRL instance document, of the same concept in the same context under the same parent. For a formal definition see duplicate item in 4.8 "Equality predicates relevant to detecting duplicate" below.</td>
</tr>
<tr>
<td>duplicate tuples</td>
<td>Two occurrences of a tuple with all their descendants having the same content; more precisely: tuples that are p-equal, all of whose tuple children have a duplicate in the other tuple, and all of whose item children are v-equal to an item in the other tuple. For a formal definition see duplicate tuple in 4.8 "Equality predicates relevant to detecting duplicate" below.</td>
</tr>
<tr>
<td>entity</td>
<td>A business entity, the subject of XBRL items. Where the XML/SGML concept of syntactic "entity" is meant, this will be pointed out.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>essence concept</td>
<td>The concept at the “from” end of a definition arc with arc role http://www.xbrl.org/2003/role#essence-alias.</td>
</tr>
<tr>
<td>essence item</td>
<td>An item in an instance whose element is an essence concept.</td>
</tr>
<tr>
<td>extended link</td>
<td>An extended link is an element identified as an extended link using the syntax defined in the XML Linking Language [XLINK]. Extended links define a set of relationships between information that they contain and information contained in third party documents. See Section 3.5.3 for more details.</td>
</tr>
<tr>
<td>fact</td>
<td>Facts can be simple, in which case their values must be expressed as simple content (except in the case of simple facts whose values are expressed as a ratio), and facts can be compound, in which case their value is made up from other simple and/or compound facts. Simple facts are expressed using items (and are referred to as items in this specification) and compound facts are expressed using tuples (and are referred to as tuples in this specification).</td>
</tr>
<tr>
<td>instance namespace</td>
<td>The namespace used for XBRL 2.1 instances, http://www.xbrl.org/2003/instance</td>
</tr>
<tr>
<td>item</td>
<td>An item is an element in the substitution group for the XBRL item element. It contains the value of the simple fact and a reference to the context (and unit for numeric items) needed to correctly interpret that fact. When items occur as children of a tuple, they must also be interpreted in light of the other items and tuples that are children of the same tuple. There are numeric items and non-numeric items, with numeric items being required to document their measurement accuracy and units of measurement.</td>
</tr>
<tr>
<td>least common ancestor</td>
<td>In an instance, the element that is an ancestor of two elements and has no child that also appears on the ancestor axis [XPATH] of those same two elements.</td>
</tr>
<tr>
<td>linkbase namespace</td>
<td>The namespace of XBRL 2.1 linkbases, http://www.xbrl.org/2003/linkbase</td>
</tr>
<tr>
<td>locator</td>
<td>Locators supply an XPointer [XPTR] reference to the taxonomy schema element definitions that uniquely identify each concept. They provide an anchor for extended link arcs. See Section 3.5.3.6 for more details.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, OPTIONAL</td>
<td>See [RFC2119] for definitions of these and other terms as used in this specification. These include:</td>
</tr>
<tr>
<td>MUST</td>
<td>The definition is an absolute requirement of the specification.</td>
</tr>
<tr>
<td>REQUIRED</td>
<td></td>
</tr>
<tr>
<td>SHALL</td>
<td>The definition is an absolute prohibition of the specification.</td>
</tr>
<tr>
<td>MUST NOT</td>
<td></td>
</tr>
<tr>
<td>SHALL NOT</td>
<td>There may be valid reasons in particular circumstances to ignore a particular feature, but the full implications must be understood and carefully weighed before choosing a different course.</td>
</tr>
<tr>
<td>SHOULD NOT</td>
<td>There may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing an behaviour described with this label.</td>
</tr>
<tr>
<td>RECOMMENDED</td>
<td></td>
</tr>
<tr>
<td>SHOULD</td>
<td>There may be valid reasons in particular circumstances to ignore a particular feature, but the full implications must be understood and carefully weighed before choosing a different course.</td>
</tr>
<tr>
<td>SHOULD NOT</td>
<td>There may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing an behaviour described with this label.</td>
</tr>
<tr>
<td>MAY</td>
<td>A feature is truly optional. One vendor may choose to include the feature because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same feature. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein and implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides.)</td>
</tr>
<tr>
<td>OPTIONAL</td>
<td></td>
</tr>
<tr>
<td>non-numeric item</td>
<td>An item that is not a numeric item as defined below. Dates, in particular, are not numeric.</td>
</tr>
<tr>
<td>numeric item</td>
<td>An item whose simple content is derived by restriction from the XML Schema primitive types <code>decimal</code>, <code>float</code> or <code>double</code>, or complex content derived by restriction from the XBRL defined type <code>fractionItemType</code> (See Section 5.1.1.3 for details on item types).</td>
</tr>
<tr>
<td>period</td>
<td>An instant or duration of time. In business reporting, financial numbers and other facts are reported “as of” an instant or for a period of certain duration. Facts about instants and durations are both common.</td>
</tr>
<tr>
<td>p-equal</td>
<td>Parent-equal: instance items or tuples having the same parent. For a formal definition, see Section 4.8 below.</td>
</tr>
<tr>
<td>resource</td>
<td>Resources are XML fragments, contained within extended links that provide additional information about concepts or items. See Section 3.5.3.7 for details.</td>
</tr>
<tr>
<td>root of an XBRL instance</td>
<td>The root of an XBRL instance is the <code>xbrl</code> element. In principle, it is possible to embed an XBRL instance in any XML document. In this case, the <code>xbrl</code> element is the container for the XBRL instance.</td>
</tr>
<tr>
<td>s-equal</td>
<td>Structure-equal: XML nodes that are either equal in the XML value space, or whose XBRL-relevant sub-elements and attributes are s-equal. For a formal definition, see Section 4.8 below.</td>
</tr>
</tbody>
</table>
1.5 Levels of conformance

This specification describes two levels of conformance for XBRL aware processors. The first is required of all XBRL processors. Support for the other level of conformance will depend on the purpose of the processor.

Minimally conforming XBRL processors MUST completely and correctly implement all of the syntactic restrictions embodied in this specification.

Fully conforming XBRL processors MUST be minimally conforming and, in addition, they MUST completely and correctly implement all of the semantic restrictions relating to linkbases and XBRL instance documents.

All restrictions embodied in this specification apply to minimally conforming processors unless otherwise stated.

2 Changes from the previous published version

Changes from the previous, December 2001 version of [XBRL] (and the interim 2.0a “patch” release in November 2002) were driven by two factors. Several implementations of XML Schema required the removal of an ambiguous content model from the definition of contexts. This was done without changing the language recognised by the schema. Further implementation experience within the XBRL community, especially the publication of the XBRL General Ledger taxonomy, motivated many other changes. A number of business requirements documented by the XBRL International Domain working group have been incorporated.

There are only two changes in XBRL 2.1 relative to XBRL 2.0 that will prevent 2.1-compliant applications from being able to process 2.0 instances and taxonomies with no loss of
information. Firstly, a new required enumerated attribute, `periodType`, has been added to the element definition. The attribute specifies whether an item represents an instantaneous measurement or a measurement over a duration. Secondly, the parent-child arc in definition linkbases has been replaced less ambiguous relationships which distinguish between the different types of relationships that parent-child formerly represented. In every other case changes involved restricting the syntax and clarifying processing semantics and automated conversion of 2.0 compliant documents to conform to the 2.1 standard is possible.

2.1 Changes in XBRL instances

The `group` element has been eliminated. It has been replaced with the `<xbrl>` element, which acts as the root element of an XBRL instance.

The set of taxonomy schemas and linkbases supporting an XBRL instance has been formally defined (as a Discoverable Taxonomy Set (DTS)). XBRL instances now identify their supporting DTS using a new `schemaRef` element, which points to supporting taxonomy schemas and using the existing `linkbaseRef` element, which points to supporting linkbases. The XML Schema Instance `schemaLocation` attribute is no longer required in the DTS discovery process.

The `schemaRef` elements must now appear first in an XBRL instance. The `linkbaseRef` elements must appear after the `schemaRef` elements and before all other elements in an XBRL instance.

Guidance has been included on the entry of numerical quantities in XBRL instances for the common case of elements from accounting related taxonomies (elements using the optional "balance" attribute in their definition). The duration element has been eliminated from context periods so durations now have to be represented using `startDate` and `endDate`. There is also additional guidance on entering data to define a period of time. The `precision` attribute on `numericContext` has been eliminated in favour of more detailed documentation at the level of the numeric items. The `CWA` attribute on the `numericContext` element has been eliminated. The `unit` element has been separated from the `numericContext` element to enable numeric and non-numeric items to use the same context structures. The `numericContext` element and the `nonNumericContext` element have been replaced with a `context` element that documents only entity, period and scenario.

An additional mechanism has been introduced to enable XBRL instance preparers to make statements about the numerical accuracy of the facts reported. Specifically, a new `decimals` attribute has been allowed on items of numeric type to provide an alternative way to document accuracy in terms of the number of decimal places to which a numerical fact is accurate. Rules for handling `precision` and `decimals` attributes have been provided.

To specify that numbers are stated exactly in an XBRL instance, two new types have been defined for use by the `decimals` and `precision` attributes. These types enable XBRL instances to specify that numbers are represented to an infinite number of significant figures or number of decimal places.

The definition of a duplicate item has been changed to include reference to the content of any tuple structures that contain the items being compared.

2.2 Changes in XBRL taxonomies

Some of the arc role values and role values previously `suggested` are now `normative` and additional arc role values and role values have been defined. Some of the previously suggested arc role values have been removed. A new mechanism to define custom arc role values and role values has been added. The element-dimension relationship in the calculation extended link has been superseded by the essence-alias arc in definition extended links. The parent-child arc no longer exists in the calculation extended link and has been replaced by summation-item arc. The parent-child arc no longer exists in the definition extended link and has been replaced by the general-special arc and by the XML Schema approach to content modelling for tuples. Because the parent-child arc in definition extended links has two possible replacements, this is one area where complete backward compatibility with 2.0 has not been
achieved. Some manual intervention may be required when converting these relationships expressed in 2.0 taxonomies to 2.1. Some networks of relationships are no longer allowed to contain directed or undirected cycles.

Tuples may now have a complex content model, but MUST only use the XML Schema ref, choice, all and sequence elements with minOccurs and maxOccurs attributes to describe this content model. Tuple content model definitions MUST NOT permit descendant elements for the tuple that are not in the item substitution group or in the tuple substitution group. This implies that the declarations of the descendant elements for tuples MUST be references to globally declared elements [SCHEMA-1].

Calculations have been constrained to apply only within the scope of a tuple for items within a tuple.

The number of available item types has been expanded to include all of the appropriate built-in data types of XML Schema [SCHEMA-2].

A new type for items has been defined to allow the specification of facts that are reported as fractions (such as 22.5/77.5). The fraction type is not among the built-in data types of XML Schema [SCHEMA-2]. Since fractions have two parts, denominator and numerator, it has complex content.

Derivation of new item and tuple types from those defined by XBRL itself has been limited so that item types MUST be defined by restriction from the set of item types provided by XBRL. This set contains item types that are derived by extension from all the appropriate built-in simple types of XML Schema and a special purpose type with complex content, the fractionItemType.

The suggested xlink:role attribute on extended link locators, that indicated the root element of a relationship hierarchy, has been eliminated.

Clarity has been provided around the possibility for linkbases to be contained in taxonomy schemas.

A mandatory periodType attribute has been added to concept definitions to constrain the type of period that can be attached to items based on concepts.

3 XBRL framework

XBRL defines a syntax in which a fact can be reported as the value of a well defined reporting concept within a particular context. The syntax enables software to efficiently and reliably find, extract and interpret those facts. The XBRL framework splits business reporting information into two components: XBRL instances and taxonomies.

XBRL instances contain the facts being reported while the taxonomies define the concepts being communicated by the facts. The combination of an XBRL instance and its supporting taxonomies, and additional linkbases constitute an XBRL business report.

3.1 Overview of XBRL taxonomies

A taxonomy is comprised of an XML Schema [SCHEMA-1] and all of the linkbases contained in that schema or directly referenced by that schema. The XML schema is known as a taxonomy schema.

In XBRL terminology, a concept is a definition of a reporting term. Concepts manifest as XML Schema [SCHEMA-1] element definitions. In the taxonomy schema a concept is given a concrete name and a type. The type defines the kind of data types allowed for facts measured according to the concept definition. For example, a “cash” concept would typically have a monetary type. This declares that when cash is reported, its value will be monetary. In contrast, a “accountingPoliciesNote” concept would typically have a string type so that, when the “accountingPoliciesNote” is reported in an XBRL instance, its value would be interpreted as a string of characters. Additional constraints on how concepts can be used are documented by
additional XBRL attributes on the XML Schema [SCHEMA-1] element definitions that correspond to the concepts. See Section 5.1.1 for details.

The linkbases in a taxonomy further document the meaning of the concepts by expressing relationships between concepts (inter-concept relationships) and by relating concepts to their documentation. See Section 5.2 for details.

A linkbase is a collection of extended links. There are five different kind of extended links used in taxonomies to document concepts: definition, calculation, presentation, label and reference. The first three types of extended link express inter-concept relationships, and the last two express relationships between concept and their documentation.

The linkbases MAY be contained in a separate document from the taxonomy schema, and they MAY be embedded in the taxonomy schema. When a linkbase is not embedded in a taxonomy schema, the taxonomy schema MUST contain a linkbaseRef to point to the linkbase document if the linkbase is to be part of the taxonomy built around the taxonomy schema.

3.2 Overview of XBRL instances

While a taxonomy defines reporting concepts, it does not contain the actual values of facts based on the defined concepts. The fact values are contained in XBRL instances and are referred to as “facts”. Besides the actual value of a fact, such as “cash is 500,000”, the XBRL instance provides contextual information necessary for interpreting the fact values. For numeric facts, the XBRL instance also documents measurement accuracy and measurement units.

An instance document can be supported by more than one taxonomy. Also, taxonomies can be interconnected, extending and modifying each other in various ways. Generally, it is necessary to consider multiple related taxonomies together when interpreting an XBRL instance. The set of related taxonomies supporting an XBRL instance is called a Discoverable Taxonomy Set (DTS). A DTS is a collection of taxonomy schemas and linkbases. At least one taxonomy schema in a DTS must import the xbrl-instance-2003-07-31.xsd (normative) schema. The bounds of a DTS are determined by starting from some set of documents (instance, taxonomy schema, or linkbase) and following DTS discovery rules. Although an instance document can be the starting point for DTS discovery, the instance document itself is not part of the DTS.

DTS rules of discovery:

Taxonomy schemas in the DTS are those:

1. referenced directly from an instance document using the schemaRef element. The xlink:href attribute on the schemaRef element contains the URL of the taxonomy schema that is discovered. Every taxonomy schema that is referenced by the schemaRef element MUST be discovered.

2. referenced from a discovered taxonomy schema via an XML Schema import or include element. Every taxonomy schema that is referenced by an import or include element in a discovered taxonomy schema MUST be discovered.

3. referenced from a discovered linkbase document via a loc element. Every taxonomy schema that is referenced by an xlink:href attribute on a loc element in a discovered linkbase MUST be discovered.

Linkbase documents in the DTS are those:

1. referenced directly from an XBRL instance via the linkbaseRef element. The xlink:href attribute contains the URL of the linkbase document being discovered. Every linkbase that is referenced by the linkbaseRef element MUST be discovered.

2. referenced from a discovered taxonomy schema via the linkbaseRef element. The xlink:href attribute contains the URL of the linkbase being discovered.
Every linkbase that is referenced by the linkbaseRef element MUST be discovered.

3. that occur at the XPath "schema/annotation/appinfo/*" in a discovered taxonomy schema (Throughout this specification, schema, annotation and appinfo are all elements defined in the XML Schema namespace).

For example, the "Financial Reporting for Commercial and Industrial Companies, US GAAP DTS" consists of well-defined concepts within the US Generally Accepted Accounting Principles (GAAP) when those principles are applied to Commercial and Industrial (C&I) companies. This DTS contains an “expense” concept.

A hospital instance document may use these concepts from the US GAAP C&I DTS as well as an additional concept “physician salaries” that is defined in a separate taxonomy. This taxonomy would include linkbases that relate the “physician salaries” concept to the “expense” concept in the US GAAP C&I DTS. The hospital instance document would have a schemaRef element pointing to the hospital taxonomy. This instance document would be the starting place for determining the DTS that supports the instance document. The discovery starts by following the schemaRef element to the hospital taxonomy. In the hospital taxonomy there would be a linkbaseRef element pointing to its linkbases. One of the linkbases contains a loc element pointing to the “expense” concept in one the US GAAP C&I taxonomies. The taxonomy that contains the “expense” concept would point to the other taxonomies in the US GAAP C&I DTS. Following this discovery process, all necessary taxonomies would be discovered and the result would be DTS that includes the US GAAP C&I DTS and the hospital specific taxonomy.

As this example shows, DTSs can also be used as “building blocks” to create larger, more sophisticated DTSs. Users MAY compose groups of existing DTSs into higher-level DTSs and MAY selectively add concepts and concept relationships via extension taxonomies.

While some consuming applications might be able to perform processing on an XBRL data file without referring to a DTS, normally, the interpretation and processing of any given XBRL fact is relative to the contents of a DTS.

For example, given an XBRL instance, to correctly produce a list of facts with the entries in the list corresponding to an ordered set of concepts, it is necessary to find the label corresponding to each fact being listed. The labels are contained in label extended links. The locations of the label extended links may be specified by linkbaseRef elements in the taxonomy schemas that have been identified as supporting the facts being presented. The label extended link locations may also be specified by linkbaseRef elements in the XBRL instance itself.

When processing an XBRL instance, consuming applications MUST use all of the linkbases referenced directly or indirectly in this way, if they are relevant to the processing activities. All references to taxonomy schemas and linkbases MUST be resolved when determining the DTS supporting an XBRL instance.

3.3 Data integrity and confidentiality

There are many applications that require business information to be transmitted securely, with a particular emphasis on data integrity (leading to the use of hash totals, etc.) and with confidentiality (leading to the use of cryptographic means of protection). XBRL deliberately provides neither of these mechanisms, since its focus is on transmission of actual content in an agreed-upon format. It is assumed that, like any other block of data, data integrity can be enhanced by adding redundant error correction bytes, by cryptographic hashing and signing with a private key, etc. These mechanisms are all outside the scope of XBRL.

An XBRL document does not have to be aware of whether all or some of it has been manipulated to be signed, encrypted, canonicalised, compressed, etc. By the time XBRL processing has to take place, all of those manipulations will have been unwound, and the XBRL payload will be free of any evidence of those operations.
3.4 Validation

XBRL instances, XBRL linkbases and XBRL taxonomy schemas MUST comply with the syntax requirements imposed in this specification. Many of these syntax requirements are expressed using XML Schemas so a part of the validation process can be performed using XML Schema validation software. Some of these syntax requirements are not or cannot be expressed using XML Schemas and so, MUST be handled using other validation technologies.

Consuming applications MAY also check that the data in an XBRL instance is consistent with the semantics expressed in the DTS supporting the instance. Semantic inconsistencies do not invalidate the XBRL documents in which they occur. However, this specification identifies the semantic inconsistencies that can be tested for by fully conformant XBRL processors.

3.5 XLink in XBRL

Links between XML fragments occur in many forms in XBRL. There are links between XBRL instances and their supporting DTS. There are links between XBRL instance facts and the footnotes that can connect them. There are links between concept syntax definitions and their semantics, defined in linkbases. The semantics themselves are expressed in the networks of links that constitute the linkbases. XBRL expresses all of these links using the syntax defined in the XLink standard [XLINK]. XBRL uses both the simple links and the extended links defined in the XLink standard.

The XLink standard specifies the syntax and semantics for a set of attributes in the XLink namespace, http://www.w3.org/1999/xlink. These attributes can then be used on elements defined in another namespace, to document various kinds of links between XML fragments. Many of these attributes are used extensively in XBRL. Others have no semantics that are relevant to the links defined by XBRL. These attributes are permitted by the XML Schema syntax constraints but they are not documented or given any specific semantics in this specification. Examples include the xlink:show and the xlink:actuate attributes.

This section documents the generic forms of the simple links and the extended links used in XBRL. Specific elements that use the simple link or extended link syntax are documented in detail in the relevant sections of this specification dealing with the syntax of XBRL instances or the syntax of XBRL taxonomies.

The syntax of the generic XLink structures used by XBRL is constrained by two XML Schemas: the xlink.xsd (normative) that defines the syntax for the XLink attributes; and the xl.xsd (normative) that defines the content models for the various kinds of link-related elements defined by this specification.

3.5.1 Simple links

A simple link is a link from one resource to another [XLINK] http://www.w3.org/TR/xlink/#simple-links. XBRL uses simple links to point to linkbases from XBRL instances and from taxonomy schemas (See Section 4.3). XBRL also uses simple links to point to taxonomy schemas from XBRL instances (See Section 4.2). XBRL uses simple links only to connect XML resources.

The XML Schema constraints on the simple links used by XBRL are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2001/XLink"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <complexType name="simpleType">
  <annotation>
   <documentation>
    Type for the simple links defined in XBRL
   </documentation>
  </annotation>
 </complexType>
</schema>
```
3.5.1.1 The xlink:type attribute on simple links

The `xlink:type` attribute MUST occur and MUST have the fixed content "simple".

3.5.1.2 The xlink:href attribute on simple links

The `xlink:href` attribute of simple link MUST occur and MUST contain a URI. The URI MUST point to an XML document or to an XML fragment within an XML document. If the URI is relative, it MUST be resolved to obtain an absolute URI as specified in XML Base specification [XML Base].

To point to a particular XML element, the URI MUST end in a fragment identifier. According to the XLink specification, XPointer [XPTR] syntax is allowed in the fragment identifier. However, XBRL restricts the allowed forms of the fragment identifier.

<table>
<thead>
<tr>
<th>Fragment Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>#id</td>
<td>The node pointed to MUST be an element with an id attribute whose content is id.</td>
</tr>
</tbody>
</table>

3.5.1.3 The xlink:role attribute on simple links (optional)

The optional `xlink:role` attribute MUST take URI values. If it is provided, the `xlink:role` attribute MUST NOT be empty.

3.5.1.4 The xlink:arcrole attribute on simple links (optional)

If it occurs, the `xlink:arcrole` attribute MUST NOT be an empty string. For simple links that point to linkbases (See Section 4.3), the `xlink:arcrole` attribute MUST have the XLink standard fixed content:
3.5.2 Linkbases

The XLink standard defines linkbases as "documents containing collections of inbound and third-party links are called link databases, or linkbases". XBRL uses linkbases to define the semantics of concepts whose syntax is governed by taxonomy schemas. Linkbases are XML elements that are extended links or that contain extended links. Linkbases can also contain documentation elements.

The linkbase element is defined as a specific linkbase container. The XML Schema constraints on the linkbase element are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xl="http://www.xbrl.org/2001/XLink"
elementFormDefault="qualified">
  <element name="linkbase">
    <annotation>
      <documentation>
        Definition of the linkbase element. Used to contain a set of zero or more extended link elements.
      </documentation>
    </annotation>
    <complexType>
      <choice minOccurs="0" maxOccurs="unbounded">
        <element ref="link:documentation"/>
        <element ref="xl:extended"/>
      </choice>
      <attribute name="id" type="IDREF" use="optional" />
      <attribute ref="xml:base"/>
    </complexType>
  </element>
</schema>
```

Example 1. A skeletal linkbase

```
<linkbase
  xmlns="http://www.xbrl.org/2003/linkbase"
  xmlns:samp="http://www.xbrl.org/sample"
  xmlns:xl="http://www.w3.org/2001/XLink"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.xbrl.org/sample samp001.xsd"
  xml:base="http://www.xbrl.org/sample">
  <calculationLink xlink:type="extended">
    <!-- ... -->
  </calculationLink>
</linkbase>
```

Meaning: Use of linkbase as the root element, holding namespace prefix definitions and the schemaLocation attribute. The "xml:" prefix need not be declared. One extended link element, the calculationLink, is contained in the linkbase.

3.5.2.1 The id attribute on the xbrl element

The linkbase element MAY have an id attribute. The value of the id attribute MUST conform to the [XML] rules for attributes with the ID type (http://www.w3.org/TR/REC-xml#NT-TokenizedType).
3.5.2.2 The xml:base attribute on the linkbase element (optional)

The xml:base attribute [XML Base] MAY appear on the linkbase element, participating in the resolution of relative URIs in the contained extended links.

3.5.2.3 Documentation elements in extended links (optional)

All linkbase elements MAY also contain documentation elements.

The XML Schema constraints on the documentation element are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
    xmlns="http://www.w3.org/2001/XMLSchema"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    xmlns:xl="http://www.xbrl.org/2001/XLink"
    elementFormDefault="qualified">

  <element name="documentation" substitutionGroup="xl:documentation">
    <annotation>
      <documentation>
        Concrete element to use for documentation of extended links and linkbases.
      </documentation>
    </annotation>
    <complexType>
      <complexContent>
        <restriction base="xl:documentationType">
          <attribute ref="xml:lang" use="required" />
          <anyAttribute namespace="##other" processContents="lax" />
        </restriction>
      </complexContent>
    </complexType>
  </element>
</schema>
```

The documentation element MUST have string content and MAY contain an xml:lang attribute, indicating the language used for the documentation. The documentation element MAY also contain any attribute that is not defined in the XBRL linkbase namespace, http://www.xbrl.org/2003/linkbase.

3.5.3 Extended links

Extended links are XLink annotated XML fragments that document a set of relationships between resources. XBRL extended links document relationships between resources that are XML fragments.

The generic XML Schema constraints on the extended links used by XBRL are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2001/XLink"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xmlns:xl="http://www.xbrl.org/2001/XLink"
    xmlns="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified"
    attributeFormDefault="unqualified">

  <complexType name="extendedType">
    <annotation>
      <documentation>
        Generic extended link type
      </documentation>
    </annotation>
    <complexType>
      <complexContent>
      </complexContent>
    </complexType>
  </complexType>
</schema>
```
XBRL extended links MAY contain five different types of child elements:

- **documentation** elements;
- **title** elements (titles);
- **locator** elements (locators);
- **resource** elements (resources); and
- **arc** elements (arcs).

The **documentation** element is for XBRL documentation purposes only and has no XLink specific semantics. Titles, locators, resources and arcs are identified by specific XLink attributes. If the titles, locators, resources and arcs are not direct children of an extended element, then they have no [XLINK] specified meaning, and hence have no XBRL-specified meaning.

Extended links are decorated by a range of different attributes. These are described below.

3.5.3.1 The id attribute (optional)

Extended links MAY have an **id** attribute. The value of the **id** attribute MUST conform to the [XML] rules for attributes with the ID type (See http://www.w3.org/TR/REC-xml#NT-TokenizedType for details). The **id** attribute identifies an extended link (see Section 4.6) so that it may be referenced directly by simple links.

3.5.3.2 The xlink:type attribute on extended links

The **xlink:type** attribute MUST occur on extended links and MUST have the fixed content “extended”.
3.5.3.3 The xlink:role attribute on extended links (optional)

The content of the xlink:role attribute is referred to as the extended link role value. The extended link role value MUST be used by applications to partition extended links into separate networks of relationships. See Section 5.1.2 for details on how the semantics embodied in extended link arcs is contingent on extended link arc role values. If the attribute is missing then its default value, for the purposes of extended link partitioning, is:

http://www.xbrl.org/2003/role#link

3.5.3.4 Documentation elements in extended links (optional)

All XBRL extended links MAY contain documentation elements.

The documentation elements in extended links conform to the same syntax requirements that apply to documentation elements in linkbase elements. See Section 3.5.2.1 for details.

3.5.3.5 Titles in extended links (optional)

All XBRL extended links MAY contain titles. Titles may be used to document extended links, as an alternative to the more limited xlink:title attributes. They are particularly useful where information needs to be provided in multiple languages. Titles have no XBRL specified semantics. To use a title, it is necessary to define a new element that is in the substitution group for the abstract title element.

The XML Schema constraints on the titles are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2001/XLink"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <complexType name="titleType">
   <annotation>
     <documentation>
       Type for the abstract title element - used as a title element template.
     </documentation>
   </annotation>
   <complexContent>
     <restriction base="anyType">
       <attribute ref="xlink:type" use="required">
         <annotation>
           <documentation>
             This attribute must have a value of "title".
           </documentation>
         </annotation>
       </restriction>
     </complexContent>
   </complexType>
   <element name="title" type="xl:titleType" abstract="true">
     <annotation>
       <documentation>
       </documentation>
     </annotation>
   </element>
 </schema>
```
3.5.3.5.1 The xlink:type attribute on titles

The `xlink:type` attribute must occur on all titles and MUST have the fixed content “title”.

3.5.3.6 Locators

Locators are child elements of an extended link that point to resources external to the extended link itself. All XBRL extended links MAY contain locators.

The XML Schema constraints on generic locators are shown below.

```
<complexType name="locatorType">
  <annotation>
    <documentation>
      Generic locator type.
    </documentation>
  </annotation>
  <complexContent>
    <restriction base="anyType">
      <sequence>
        <element ref="xlink:title" minOccurs="0" maxOccurs="unbounded" />
      </sequence>
      <attribute ref="xlink:type" use="required">
        <annotation>
          <documentation>
            This attribute must have a value of "locator".
          </documentation>
        </annotation>
      </attribute>
      <attribute ref="xlink:href" use="required" />
      <attribute ref="xlink:label" use="required" />
      <attribute ref="xlink:role" use="optional" />
      <attribute ref="xlink:title" use="optional" />
    </restriction>
  </complexContent>
</complexType>
```

For consistency, the `loc` element is the only locator defined for use in XBRL extended links. The `loc` element is a concrete version of the generic locator. The XML Schema syntax constraints on the `loc` element are shown below.

```
<element name="loc" type="xl:locatorType" abstract="true">
  <annotation>
    <documentation>
      Abstract locator element to be used as head of locator substitution group for all extended link locators in XBRL.
    </documentation>
  </annotation>
</element>
```

For consistency, the `loc` element is the only locator defined for use in XBRL extended links. The `loc` element is a concrete version of the generic locator. The XML Schema syntax constraints on the `loc` element are shown below.
3.5.3.6.1 The xlink:type attribute on locators

The xlink:type attribute must occur on all locators and MUST have the fixed content “locator”.

3.5.3.6.2 The xlink:href attribute on locators

The xlink:href attribute on locators conforms to the same requirements applying to the xlink:href attribute on simple links. See Section 3.5.1.2 for details.

3.5.3.6.3 The xlink:label attribute on locators

The xlink:label attribute on a locator identifies the locator so that it can be referenced by arcs in the same extended link. Multiple locators and resources in an extended link MAY have the same xlink:label attribute value. The xlink:label attribute value MUST be an NCName [XML] (http://www.w3.org/TR/REC-xml-names/#NT-NCName). This requirement means that xlink:label attributes MUST begin with a letter or an underscore.

3.5.3.6.4 Titles on locators (optional)

Locators MAY contain titles. Title children of locators MUST conform to the same restrictions applying to title children of extended links. See Section 3.5.3.5 for details.

3.5.3.7 Resources

Some XBRL extended links MAY contain resources. A resource is an XML fragment in an extended link that is related to other resources in the extended link and to resources outside of the extended link.

The XML Schema constraints on generic resources are shown below.
The content of generic resources is very loosely constrained. More specific constraints are applied by this specification for specific kinds of resources in specific kinds of extended links.

3.5.3.7.1 The xlink:type attribute on resources

The xlink:type attribute MUST occur on all resources and MUST have the fixed content "resource".

3.5.3.7.2 The xlink:label attribute on resources

The xlink:label attribute on a resource identifies the resource so that it can be referenced by arcs in the same extended link. The xlink:label attribute on resources conforms to the same requirements applying to the xlink:label attribute on locators. See Section 3.5.3.6.3 for details. Several resources in an extended link MAY have the same label.

3.5.3.7.3 The xlink:role attribute on resources (optional)

The optional xlink:role attribute on a resource is referred to as the resource role.

Resources MAY contain an xlink:role attribute, which SHOULD distinguish between resources based on the nature of the information that they contain. Some of the resources defined in this specification have a set of standard resource role values defined for them.

3.5.3.7.4 The id attribute on resources (optional)

The id attribute MAY occur on all resources in XBRL extended links. The value of the id attribute MUST conform to the [XML] rules for attributes with the ID type (http://www.w3.org/TR/REC-xml#NT-TokenizedType). The id attribute identifies the resource so that it may be referenced by locators in other extended links for the purposes of arc prohibition (See Section 3.5.3.8.5).

3.5.3.8 Arcs

All XBRL extended links MAY contain arcs. Arcs document relationships between resources identified by locators in extended links or occurring as resources in extended links.

Arcs join the elements referenced in their XLink attributes: xlink:from and xlink:to. These two attributes contain the xlink:label attribute values of either locators or resources within the same extended link as the arc itself. The relationship documented by an arc is a...
relationship running from the resource or locator identified by the xlink:from attribute to the resource or locator identified by the xlink:to attribute.

The XML Schema constraints on generic arcs are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2001/XLink"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xmlns:xl="http://www.xbrl.org/2001/XLink"
    xmlns="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified"
    attributeFormDefault="unqualified">

    <!simpleType name="useEnum">
    <annotation>
        <documentation>Enumerated values for the use attribute on extended link arcs.</documentation>
    </annotation>
    <restriction base="NMTOKEN">
        <enumeration value="optional"/>
        <enumeration value="prohibited"/>
    </restriction>
    </simpleType>

    <!complexType name="arcType">
    <annotation>
        <documentation>Basic extended link arc type - extended where necessary for specific arcs Extends the generic arc type by adding use, priority and order attributes.</documentation>
    </annotation>
    <complexContent>
        <restriction base="anyType">
            <sequence>
                <element ref="xl:title" minOccurs="0" maxOccurs="unbounded"/>
            </sequence>
            <attribute ref="xlink:type" use="required">
                <annotation>
                    <documentation>This attribute must have a value of "arc".</documentation>
                </annotation>
            </attribute>
            <attribute ref="xlink:from" use="required"/>
            <attribute ref="xlink:to" use="required"/>
            <attribute ref="xlink:arcrole" use="required"/>
            <attribute ref="xlink:title" use="optional"/>
            <attribute ref="xlink:show" use="optional"/>
            <attribute ref="xlink:actuate" use="optional"/>
            <attribute name="order" type="decimal" use="optional"/>
            <attribute name="use" type="xl:useEnum" use="optional"/>
            <attribute name="priority" type="integer" use="optional"/>
            <anyAttribute namespace="##other" processContents="lax"/>
        </restriction>
    </complexContent>
    </complexType>

    <!element name="arc" type="xl:arcType" abstract="true">
    <annotation>
        <documentation>Abstract element to use as head of arc element substitution group.</documentation>
    </annotation>
    </element>
</schema>
```
Example 2. Correct use of arcs according to [XLINK]

[XLINK] forbids duplicate arcs within a single extended link and ignores arcrole in determining duplicates so the following example is invalid (See Section 5.2.6 for details of definitionLink extended links):

```xml
<definitionLink xlink:type="extended">
  <definitionArc from="a" to="b" arcrole="http://www.xbrl.org/2003/role#general-special" />
  <definitionArc from="a" to="b" arcrole="http://www.xbrl.org/2003/role#requires-target" />
</definitionLink>
```

instead, the following construction MUST be used:

```xml
<definitionLink xlink:type="extended">
  <definitionArc from="a" to="b" arcrole="http://www.xbrl.org/2003/role#general-special" />
</definitionLink>
<definitionLink>
  <definitionArc from="a" to="b" arcrole="http://www.xbrl.org/2003/role#requires-target" />
</definitionLink>
```

3.5.3.8.1 The xlink:type attribute on arcs

The xlink:type attribute MUST occur on all arcs and MUST have the fixed content “arc”.

3.5.3.8.2 The xlink:from attribute

The xlink:from attribute on an arc MUST be equal to the value of an xlink:label attribute of at least one locator or resource in the same extended link element as the arc element itself.

The xlink:from attribute value MUST be an NCName [XML] (http://www.w3.org/TR/REC-xml-names/#NT-NCName). This requirement means that xlink:from attributes MUST begin with a letter or an underscore.

3.5.3.8.3 The xlink:to attribute

The xlink:to attribute on an arc MUST be equal to the value of an xlink:label attribute of at least one locator or resource in the same extended link element as the arc element itself.

The xlink:to attribute value MUST be an NCName [XML] (http://www.w3.org/TR/REC-xml-names/#NT-NCName). This requirement means that xlink:to attributes MUST begin with a letter or an underscore.

3.5.3.8.4 The xlink:arcrole attribute

The xlink:arcrole attribute documents the specific kind of relationship being expressed by the arc. Its value is referred to as an arc role value. Its value MUST be an absolute URI. A set of standard arc role values are defined and given specific meaning in this specification for each arc element. These are documented in the sections describing the specific XBRL arc elements (labelArc, referenceArc, calculationArc, definitionArc, presentationArc, and footnoteArc) on which they are to be used.

New arc role values MAY be defined in taxonomy schemas. The semantics for new arc role values are defined using the arcroleType element (see Section 5.1.4). An arc role value MUST be an absolute URI that can be resolved to address the fragment of an XML Schema document containing the roleType element.
All arc role values in XBRL extended links follow a special URI format. The arc role value MUST identify the arcRoleType element (see Section 5.1.4) where the semantics and syntax of the arc role value is defined. A fragment identifier in the arc role value is used to identify the specific arcRoleType element within the document identified by the URI. The XBRL standard arc role values are defined in the XBRL role schema (See xbrl-role-2003-07-31.xsd (normative)).

3.5.3.8.5 Prohibiting arcs

A taxonomy author will generally not have write permissions on linkbases created by other taxonomy authors. In situations where a taxonomy author needs to modify the relationships expressed in linkbases that they cannot alter directly, they may create new linkbases that override specific arcs in the linkbases to be modified.

For an example of the use of overriding arcs, please see the non-normative examples that are distributed with the specification.

The only option available to prohibit relationships in the third party’s extended link is to create a new equivalent arc in a new extended link that negates the original arc in the original extended link.

The syntax for prohibiting arcs is provided by two attributes, use and priority, that are available on all arc elements defined in this specification.

3.5.3.8.5.1 Arc equivalence

XLink does not define the interaction of arcs from multiple linkbases in any way. It only specifies that arc elements connecting the same “from” and “to” labels MUST appear in different extended link elements even if the arcrole attributes are equal [XLINK]. There are situations in XBRL taxonomy construction when a third party may want to edit the linkbase constructed by a previous author. This may be the addition of links, but it may also be the desire of the third party to override or negate links created by the original taxonomy author.

The concept of equivalence for XBRL arcs is formally defined as follows:

Two arcs are equivalent if and only if all of the following conditions are true:

i. They have s-equal element names, and
ii. Their containing extended links have element names that are s-equal, and
iii. Their arc role attributes have s-equal content, and
iv. The extended links in which they are contained have roles with s-equal content, and
v. Their xlink:from attributes have the label of locator elements with s-equal href content, and
vi. For arcs relating concepts, their xlink:to attributes have the xlink:label of locator elements that have s-equal href content, and
vii. For arcs relating concepts to an extended link resource, both arcs MUST have xlink:to attributes that are either equal to the xlink:label attribute values on locators in their own extended links that point to the resource or, if the arcs are in the extended link that also contains the resource, that are equal to the xlink:label attribute value on the resource itself.

3.5.3.8.5.2 The use attribute (optional)

The optional use attribute MUST take one of two possible values – “optional”, or “prohibited”. use="optional" indicates that the arc MAY be traversed. This is the default value that MUST be inferred for the use attribute if the use attribute is not specified.

use="prohibited" indicates that any equivalent (See Section 3.5.3.8.5.1) arc with a lower priority (See Section3.5.3.8.5.3) MUST NOT be traversed because it is a prohibited arc.
As a motivating example, consider the situation of a third party desiring to create a new "sub-total" concept intervening between "children" concepts that already have summation-item arcs to the "total" concept (See Section 5.2.5.2 for details about summation-item arcs and calculation relationships in extended links). The creator of the sub-total concept will add arcs from the sub-total concept to the children concepts and from the total concept to the sub-total concept. There would then be two paths from the children concepts to the total concept, one using the new arcs through the sub-total concept, and the other using the original arcs direct from the summation concept. In the case of calculation links, this could result in the double counting of values. The creator of the sub-total concept SHOULD create prohibiting arcs to prevent this, preventing traversal of the arcs going directly from the total concept to the children concepts.

Example 3. Using arc prohibition to insert a new sub-total into a calculation network

Arc prohibition is also defined for arcs from concepts to resources, such as label and reference elements. Prohibition of an arc to a resource implies that the resource itself has been disassociated from the concept. To prohibit an arc to a resource element in another extended link, a prohibiting arc MUST connect to a locator that points to the resource participating in the relationship being prohibited.

3.5.3.8.5.3 The priority attribute (optional)

The content of the priority attribute is an integer. Given two equivalent arcs, the behaviour of an XBRL application MUST be based on the values of the priority attributes of the two arcs. The arc with the numerically larger priority attribute value MUST override the other arc, being the only one of the two arcs that is traversed. If the two arcs have the same priority value, behaviour is application dependent.

The default value of the priority attribute is "0".

Where there is the possibility that an extension linkbase might introduce an illegal cycle (see Section 5.2) the authors should take care to assign priority attributes in such a way as to prevent such cycles. Overridden arcs MUST NOT be taken into account when detecting cycles.

3.5.3.8.6 The order attribute (optional)

The optional order attribute MUST have a decimal value that that indicates the order in which applications MUST display siblings when hierarchical networks of arcs are being displayed. If missing, the order attribute value MUST default to "1". If multiple siblings in the hierarchy have the same order attribute value, the presentation order of those siblings is application dependent. The value of the order attribute is not restricted to integers, which is useful when there is a need to place a new sibling in between two previously defined siblings.

In situations where it is necessary to present prohibited arcs, the order attribute value of the prohibiting arcs MUST dictate the ordering of siblings. The value of the order attribute for a prohibited arc MUST be ignored.

3.5.3.8.7 Titles on arcs (optional)

Arcs MAY contain titles. Title children of arcs MUST conform to the same restrictions applying to title children of extended links. See Section 3.5.3.5 for details.

4 XBRL instances (the xbrl element)

An overview of XBRL instances is provided in Section 3.2.

XBRL instances are XML fragments with root element, xbrl. XBRL instances contain facts, with each fact corresponding to a concept defined in their supporting DTS. XBRL instances also contain context and unit elements that provide additional information needed to interpret the facts in the instance.

Facts can be simple, in which case their values are expressed as simple content (except in the case of simple facts whose values are expressed as a ratio), and facts can be compound, in which case their values are made up from other simple and/or compound facts. Simple facts are expressed using items (and are referred to as items in this specification) and compound facts are expressed using tuples (and are referred to as tuples in this specification).

Although the syntax for any given tuple or item can only be defined in a single taxonomy schema, an XBRL instance MAY contain XBRL items and tuples from any number of taxonomy schemas.

XBRL instances identify the taxonomy schemas and XBRL linkbases that make up the starting points for discovery of the DTS that supports them. Section 3.2 documents how the DTS supporting an XBRL instance is to be determined.

The taxonomy schemas and the linkbases used as starting points in DTS discovery are identified via the schemaRef elements linkbaseRef elements in XBRL instances respectively. This enables XBRL instances to exert some control over the interpretation of the information that they report.

For example, the same set of elements defined in a taxonomy schema might have Spanish and Portuguese literature references defined in different linkbases (that are not referenced directly from that schema). An instance might provide access to both or neither of these linkbases in order to specify which set of references they consider to be more appropriate.

An XBRL instance MUST comply with the rules specified herein. The syntax for XBRL instances is defined using a set of XML Schemas. Example elements defined in the XBRL instance schema, xbrl-instance-2003-07-31.xsd (normative), include xbrl, item, context, unit, and tuple. All XBRL instances MUST be valid XML documents as defined by XML Schema [SCHEMA-1].
The semantics of XBRL instances and their contents are specified only insofar as they impact the operation of software applications that use this specification.

Expressing even a single fact in an XBRL instance requires multiple elements, at least one item element (see Section 4.1.1) and a context element containing sub-elements (see Section 4.5 below). Therefore, a container element is necessary to serve as the root element of an XBRL instance. This container is the `xbrl` element. If multiple “data islands” of XBRL mark-up are included in a larger document, the `xbrl` element is the container for each. The XML Schema definition for the `xbrl` element is set out below.

The XML Schema constraints on the `xbrl` element are shown below.

```
<schema xmlns="http://www.w3.org/2001/XMLSchema"
       xmlns:xbrli="http://www.xbrl.org/2003/instance"
       xmlns:link="http://www.xbrl.org/2003/linkbase"
       targetNamespace="http://www.xbrl.org/2003/instance"
       elementFormDefault="qualified">
  <element name="xbrl">
    <annotation>
      <documentation>
        XBRL instance root element.
      </documentation>
    </annotation>
    <complexType>
      <sequence>
        <element ref="link:schemaRef" minOccurs="1" maxOccurs="unbounded" />
        <element ref="link:linkbaseRef" minOccurs="0" maxOccurs="unbounded" />
        <choice minOccurs="0" maxOccurs="unbounded">
          <element ref="xbrli:item" />
          <element ref="xbrli:tuple" />
          <element ref="xbrli:context" />
          <element ref="xbrli:unit" />
          <element ref="link:footnoteLink" />
        </choice>
      </sequence>
      <attribute name="id" type="ID" use="optional" />
      <attribute ref="xml:base" use="optional" />
      <anyAttribute namespace="##other" processContents="lax" />
    </complexType>
  </element>
</schema>
```

Example 4. Use of `xbrl` as the root element

```
<xbrl xmlns="http://www.xbrl.org/2003/instance"
      xmlns:xlink="http://www.w3.org/2001/XLink"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  <schemaRef xlink:type="simple"
      xlink:arcrole="http://www.w3.org/1999/xlink/arcrole" />
  <ci:assets contextRef="c1">727</ci:assets>
  <ci:liabilities contextRef="c1">635</ci:liabilities>
  <context id="c1"></context>
</xbrl>
```

Meaning: `xbrl` holds namespace prefix definitions and the `schemaLocation` attribute.
4.1.1 The id attribute on the xbrl element (optional)

The xbrl element MAY have an id attribute. The value of the id attribute MUST conform to the [XML] rules for attributes with the ID type (http://www.w3.org/TR/REC-xml#NT-TokenizedType).

4.1.2 The xml:base attribute on the xbrl element (optional)

The xbrl element MAY have an xml:base attribute. The xml:base attribute [XML Base] MAY appear on the xbrl element, participating in the resolution of relative URIs in the XBRL instance.

4.2 The schemaRef element

Every XBRL instance MUST contain at least one schemaRef element. The schemaRef element is a simple link, as defined in Section 3.5.1. The schemaRef element MAY occur as a child element of an xbrl element. All schemaRef elements in an XBRL instance MUST occur before other children of the xbrl element, in document order.

In an XBRL instance document, the schemaRef element points to a taxonomy schema that becomes part of the DTS supporting that XBRL instance.

The XML Schema definition of the schemaRef element is shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/instance"
    xmlns:xl="http://www.xbrl.org/2001/XLink"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xmlns:xbrli="http://www.xbrl.org/2003/instance"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    xmlns="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified">
    <element name="schemaRef" type="link:simpleType"/>
</schema>
```

4.2.1 The xlink:type attribute on schemaRef elements

The xlink:type attribute MUST occur and MUST have the fixed content “simple”.

4.2.2 The xlink:href attribute on schemaRef elements

The xlink:href attribute MUST contain a URI. The URI MUST point to an XML Schema. If the URI reference is relative, its absolute version MUST be determined as specified in XML Base [XML Base] before use.

4.2.3 The xlink:arcrole attribute on schemaRef elements (optional)

The xlink:arcrole attribute May be used on the schemaRef element. It is given no semantics by this specification.

4.2.4 The xlink:role attribute on schemaRef elements (optional)

The xlink:role attribute May be used on the schemaRef element. No semantics are defined for the xlink:role attribute when it occurs on the schemaRef element.
4.3 The linkbaseRef element in XBRL instances

The XLink specification provides for a standard way of finding linkbases
[XLINK]http://www.w3.org/TR/xlink/#xlg. The linkbaseRef element conforms to this standard
by using a specific xlink:arcrole content value (See Section 4.3.3).

One or more linkbaseRef elements MAY occur as children of the xbrl element (They MAY also
occur in taxonomy schemas. See Section 0 for details). If linkbaseRef elements occur as
children of xbrl elements, they MUST follow the schemaRef elements and precede all other
elements, in document order.

In an XBRL instance document, the linkbaseRef element identifies a linkbase that becomes
part of the DTS supporting that XBRL instance.

The XML Schema constraints applying to the linkbaseRef element are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
  xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:link="http://www.xbrl.org/2003/linkbase"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  xmlns:xl="http://www.xbrl.org/2001/XLink"
  elementFormDefault="qualified">
  <element name="linkbaseRef" substitutionGroup="xl:simple">
    <annotation>
      <documentation>
        Definition of the linkbaseRef element - used
to link to XBRL taxonomy extended links from
taxonomy schema documents and from XBRL
instance documents.
      </documentation>
    </annotation>
    <complexType>
      <complexContent>
        <restriction base="xl:simpleType">
          <attribute ref="xlink:arcrole" use="required">
            <annotation>
              <documentation>
                This attribute must have the value:
                http://www.w3.org/1999/xlink/properties/linkbase
              </documentation>
            </annotation>
          </attribute>
        </restriction>
      </complexContent>
    </complexType>
  </element>
</schema>
```

4.3.1 The xlink:type attribute on linkbaseRef elements

The xlink:type attribute MUST occur and MUST have the fixed content "simple".

4.3.2 The xlink:href attribute on linkbaseRef elements

The xlink:href attribute of the linkbaseRef element MUST contain a URI. The URI MUST point
to a linkbase (as defined in Section 3.5.2) that contains the appropriate extended links, as
determined by the value of the xlink:role attribute. If the URI reference is relative, its
absolute version MUST be determined as specified in XML Base [XML Base] before use.
4.3.3 The xlink:arcrole attribute

To indicate that the linkbaseRef element points to a linkbase, the xlink:arcrole attribute on the linkbaseRef element MUST have the XLink standard fixed content:

http://www.w3.org/1999/xlink/properties/linkbase

4.3.4 The xlink:role attribute on linkbaseRef elements (optional)

The optional xlink:role attribute constrains the kinds of extended links that are permitted within the linkbase identified by the linkbaseRef element. Table 2 sets out the standard xlink:role attribute values for the xlink:role attribute when it occurs on the linkbaseRef element. Table 2 also documents which kinds of extended links:

- MUST be contained by the linkbase connected to by a linkbaseRef element with each of the standard xlink:role attribute values; and
- MUST NOT be contained by the linkbase connected to by a linkbaseRef element with each of the standard xlink:role attribute values.

If a linkbaseRef element connects to a linkbase containing an extended link that has not been defined in this specification, then a non-standard value of the xlink:role attribute MAY be used or the xlink:role attribute MAY be omitted.

Table 2. Roles in the linkbaseRef element

<table>
<thead>
<tr>
<th>Values of the linkbaseRef xlink:role attribute</th>
<th>Element pointed to by xlink:href</th>
</tr>
</thead>
<tbody>
<tr>
<td>(unspecified)</td>
<td>MAY contain any extended link elements</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#calculationLinkbaseRef</td>
<td>MUST contain only calculationLink elements</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#definitionLinkbaseRef</td>
<td>MUST contain only definitionLink elements</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#labelLinkbaseRef</td>
<td>MUST contain only labelLink elements</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#presentationLinkbaseRef</td>
<td>MUST contain only presentationLink elements</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#referenceLinkbaseRef</td>
<td>MUST contain only referenceLink elements</td>
</tr>
</tbody>
</table>

4.4 Items

As discussed in Section 3 above, an item represents a single fact or business measurement. In the XML Schema for XBRL instances, item is defined as an abstract element. This means that it will never appear in its own right in an XBRL instance. Therefore, all elements representing single facts or business measurements defined in an XBRL taxonomy document and reported in an XBRL instance MUST be either (a) members of the substitution group item; or, (b) members of a substitution group originally based on item. XBRL taxonomies include taxonomy schemas that contain such element definitions.

item elements MUST NOT be descendants of other item elements. Structural relationships necessary in an XBRL document instance MUST be captured only using tuples (see Section 4.7). The intellectual structure – the relationship of financial concepts to each other in a variety of senses – is captured by the link structure of taxonomy linkbases rather than by nesting of facts in XBRL instances.

The XML Schema definition of the item element and the data types for elements in the item substitution group are given below.

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xbrli="http://www.xbrl.org/2003/instance"
```
<attributeGroup name="numericItemAttrs">
 <annotation>
 <documentation>
 Group of attributes for numeric items
 </documentation>
 </annotation>
 <attribute name="contextRef" type="IDREF" use="required" />
 <attribute name="unitRef" type="IDREF" use="required" />
 <attribute name="precision" type="xbrli:precisionType" use="optional" />
 <attribute name="decimals" type="xbrli:decimalsType" use="optional" />
 <attribute name="id" type="ID" use="optional" />
 <anyAttribute namespace="#other" processContents="lax"/>
</attributeGroup>

<attributeGroup name="nonNumericItemAttrs">
 <annotation>
 <documentation>
 Group of attributes for non-numeric items
 </documentation>
 </annotation>
 <attribute name="contextRef" type="IDREF" use="required" />
 <attribute name="id" type="ID" use="optional" />
 <anyAttribute namespace="#other" processContents="lax"/>
</attributeGroup>

<annotation>
 <documentation>
 XBRL domain numeric item types - for use on concept element definitions
 The following 4 numeric types are all types that have been identified as
 having particular relevance to the domain space addressed by XBRL and are
 hence included in addition to the built-in types from XML Schema.
 </documentation>
</annotation>

<complexType name="monetaryItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:monetary">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="sharesItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:shares">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="pureItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:pure">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="fractionItemType" final="extension">
 <sequence>
 <element name="numerator" type="decimal" />
 <element name="denominator" type="xbrli:nonZeroDecimal" />
 </sequence>
 <attribute name="contextRef" type="IDREF" use="required" />
</complexType>
Example 5. A numeric fact with three significant digit

```xml
<ci:capitalLeases contextRef="c1" unitRef="u1" precision="3">727000</ci:capitalLeases>
```

Meaning: The value of Capital Leases in the numeric context labelled c1 is 727000 accurate to 3 significant figures. Note that it will be necessary to consult the context (defined below) in order to determine other details concerning the value such as entity, period, etc. and it will be necessary to consult the referenced unit element to determine the relevant unit information.

Example 6. A non-numeric item

```xml
<ci:concentrationsNote contextRef="c1">Concentration of credit risk with regard to short term investments is not considered to be significant due to the Company’s cash management policies. These policies restrict investments to low risk, highly liquid securities (that is, commercial paper, money market instruments, etc.), outline issuer credit requirements, and limit the amount that may be invested in any one issuer.</ci:concentrationsNote>
```

Meaning: The text of the Concentrations note in the non-numeric context labelled c1.

The content of the abstract item element is derived from anyType. Each member of the substitution group of item must have a defined XBRL item type. This allows each substitution for item in the instance to validate against its own data type. There is one defined XBRL item type derived from each of the appropriate built-in types of XML Schema, along with the fractionItemType type. The complete list is in Section 5.1.1.3. An item MUST NOT have complex content unless its item type is derived by restriction from fractionItemType.

The contextRef attribute is an IDREF to the context element (see Section 4.5) that holds additional relevant information about the fact represented. An item MUST contain a contextRef attribute that references a context element in the same XBRL instance. Note that an XBRL instance is an occurrence of the xbrl element, not the entire document. Items whose content is derived from an XML Schema built-in numeric type (decimal, float or double or a built-in type derived from one of them) or fractionItemType by restriction MUST use the contextRef attribute and the unitRef attribute; all others MUST use the contextRef attribute.
The `unitRef` attribute is an IDREF to the unit element (see Section 4.6) that holds information about units in which numeric facts have been measured. The `unitRef` attribute MUST NOT occur in non-numeric items. The `unitRef` attribute MUST occur in numeric items, referencing a unit element in the same XBRL instance.

Two optional attributes, `precision` and `decimals`, are available on numeric items (except those with type `fractionItemType`) to enable the XBRL instance creator to make statements about the accuracy of the facts represented. They are discussed in the following sections.

4.4.1 Usage of precision and decimals attributes

A numeric item MUST have either a `precision` attribute or a `decimals` attribute unless it is of the `fractionItemType` or of a type that is derived by restriction from `fractionItemType` or has a nil value, in which case, it MUST NOT have either a `precision` attribute or a `decimals` attribute.

A numeric item MUST NOT have both a `precision` attribute and a `decimals` attribute.

A non-numeric item MUST NOT have either a `precision` or a `decimals` attribute.

When determining whether two numeric items are v-equal (a predicate that is used in the definition of various other equality type predicates) it is necessary to take into consideration the values of `precision` (or the precision inferred from the value of the `decimals` attribute) for the two numeric items. The formal definition of v-equal for two numeric items is given in Section 4.8.

4.4.2 The precision attribute (optional)

The precision attribute MUST be a non-negative integer or the string "INF" that conveys the arithmetic precision of a measurement, and, therefore, the utility of that measurement to further calculations. Different software packages may claim different levels of accuracy for the numbers they produce. The precision attribute allows any producer to state the precision of the output in the same way. If a numeric fact has a precision attribute that has the value "n" then it is correct to "n" significant figures (See Section 4.4.1 for the normative definition of 'correct to "n" significant figures'). An application SHOULD ignore any digits after the first "n" decimal digits, counting from the left, starting at the first non-zero digit in the lexical representation of any number for which the value of precision is specified or inferred to be n.

The meaning of `precision="INF"` is that the lexical representation of the number is the exact value of the fact being represented.

Example 7. Precision and lexical representation

<table>
<thead>
<tr>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>precision="9"</code></td>
<td>Precision of nine digits. The first 9 digits, counting from the left, starting at the first non-zero digit in the lexical representation of the value of the numeric fact are known to be trustworthy for the purposes of computations to be performed using that numeric fact.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precision</th>
<th>Example</th>
<th>Read as</th>
<th>Known to be GE</th>
<th>Known to be LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>476.334</td>
<td>476.334</td>
<td>476.334</td>
<td>476.33400000000…</td>
</tr>
<tr>
<td>3</td>
<td>205</td>
<td>205e0</td>
<td>204.5</td>
<td>205.5</td>
</tr>
<tr>
<td>4</td>
<td>2002000</td>
<td>2002e3</td>
<td>2001500</td>
<td>2002500</td>
</tr>
<tr>
<td>2</td>
<td>2012</td>
<td>20e2</td>
<td>1950</td>
<td>2050</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>20e2</td>
<td>1950</td>
<td>2050</td>
</tr>
<tr>
<td>1</td>
<td>99</td>
<td>9e1</td>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>0</td>
<td>1234</td>
<td>1234</td>
<td>unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

The simple type `precisionType` has been provided to define the value space for the value of the precision attribute. Its definition is as follows:
4.4.3 The decimals attribute (optional)

The decimals attribute MUST be an integer or the value "INF" that informs the document consumer of the number of decimal places to which the value of the fact represented may be considered accurate, possibly as a result of rounding or truncation. If a numeric fact has a decimals attribute with the value "n" then it is known to be correct to "n" decimal places. (See section 4.4.5.2 for the normative definition of ‘correct to "n" decimal places’).

The meaning of decimals="INF" is that the lexical representation of the number is the exact value of the fact being represented.

Example 8. Decimals and lexical representation

<table>
<thead>
<tr>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimals="2"</td>
<td>The value of the numeric fact is known to be correct to 2 decimal places.</td>
</tr>
<tr>
<td>decimals="-2"</td>
<td>The value of the numeric fact is known to be correct to –2 decimal places, i.e. all digits prior to the hundreds digit are accurate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimals</th>
<th>Original</th>
<th>Read as</th>
<th>Known to be GE</th>
<th>Known to be LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>436.749</td>
<td>436.749</td>
<td>436.749</td>
<td>436.74900000...</td>
</tr>
<tr>
<td>2</td>
<td>10.00</td>
<td>10.00</td>
<td>9.995</td>
<td>10.005</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10.00</td>
<td>9.995</td>
<td>10.005</td>
</tr>
<tr>
<td>2</td>
<td>10.000</td>
<td>10.00</td>
<td>9.995</td>
<td>10.005</td>
</tr>
<tr>
<td>2</td>
<td>10.009</td>
<td>10.00</td>
<td>9.995</td>
<td>10.005</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10.00</td>
<td>5.00</td>
<td>15</td>
</tr>
<tr>
<td>-1</td>
<td>10</td>
<td>10.00</td>
<td>5.00</td>
<td>15</td>
</tr>
<tr>
<td>-1</td>
<td>11</td>
<td>10.00</td>
<td>5.00</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>205</td>
<td>205.000</td>
<td>204.9995</td>
<td>205.0005</td>
</tr>
<tr>
<td>4</td>
<td>2002000</td>
<td>2002000.0000</td>
<td>2001999.99995</td>
<td>2002000.00005</td>
</tr>
<tr>
<td>-2</td>
<td>205</td>
<td>200.00</td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>-2</td>
<td>2002000</td>
<td>2002000.</td>
<td>2001950</td>
<td>2002050</td>
</tr>
<tr>
<td>-3</td>
<td>2002000</td>
<td>2002000.</td>
<td>2001500</td>
<td>2002500</td>
</tr>
</tbody>
</table>
The simple type `decimalsType` has been provided to define the value space for the value of the `decimals` attribute. Its definition is as follows:

```
<schema xmlns="http://www.w3.org/2001/XMLSchema"
    xmlns:xbrli="http://www.xbrl.org/2003/instance"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    targetNamespace="http://www.xbrl.org/2003/instance"
    elementFormDefault="qualified">

  <simpleType name="decimalsType">
    <annotation>
      <documentation>
        This type is used to specify the value of the decimals attribute
        on numeric items. It consists of the union of integer and "INF"
        (used to signify that a number is expressed to an infinite number
        of decimal places or "exact value").
      </documentation>
    </annotation>
    <union memberTypes="integer ">
      <simpleType>
        <restriction base="string">
          <enumeration value="INF" />
        </restriction>
      </simpleType>
    </union>
  </simpleType>
</schema>
```

4.4.4 Inferring precision from decimals

The following inference rules are provided to enable XBRL instance consumers to infer precision from the `decimals` attribute value.

If, on a numeric item, the `decimals` attribute is present rather than the `precision` attribute, then a consuming application MUST infer the precision of that numeric fact if it is to be used in calculations or searches for duplicate in XBRL instances.

Given the value of the `decimals` attribute, the precision of a numeric item is equal to \(n \), where \(n \) is equal to the maximum of 0 and the result of the following calculation:

- if there are non-zero digits to the left of the decimal point or implied decimal point if absent then the number of digits excluding any leading zeros to the left of the decimal point (or implied decimal point if absent) in the lexical representation of the numerical fact
- otherwise the negative of the number of zeros between the decimal point and the first non-zero digit in the lexical representation of the numerical fact
 - plus
 - the value of the exponent in the lexical representation of the numerical fact (if present)
 - plus
 - the number of decimal places to which the numeric fact is known or inferred to be correct.
Example 9. Lexical representation, precision and decimals

<table>
<thead>
<tr>
<th>Lexical Representation</th>
<th>Value of the decimals attribute</th>
<th>Inferred value of the precision attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>2</td>
<td>3+2=5</td>
</tr>
<tr>
<td>123.4567</td>
<td>2</td>
<td>3+2=5</td>
</tr>
<tr>
<td>123e5</td>
<td>-3</td>
<td>3+5+(-3)=5</td>
</tr>
<tr>
<td>123.45e5</td>
<td>-3</td>
<td>3+5+(-3)=5</td>
</tr>
<tr>
<td>0.1e-2</td>
<td>5</td>
<td>0+(-2)+5=3</td>
</tr>
<tr>
<td>0.001e-2</td>
<td>5</td>
<td>(-2)+(-2)+5=1</td>
</tr>
<tr>
<td>0.001e-3 (this is a pathological case)</td>
<td>4</td>
<td>(-2)+(-3)+4=-1 which is less than 0 and hence 0</td>
</tr>
</tbody>
</table>

4.4.5 Definitions pertaining to accuracy

The following definitions are provided for clarity regarding accuracy related features of this specification, i.e. precision and decimals attributes.

4.4.5.1 “Correct to \(n \) Significant Figures”, “Rounding” and “Truncation”

If a number is said to be correct to \(n \) significant figures it means that the first \(n \) decimal digits, counting from the left, starting at the first non-zero digit in the lexical representation of the number are known to be accurate for the purposes of computations to be performed using that number. (Note: in the following it is assumed that all zeros to the left of the decimal point and to the left of the first non-zero digit in the decimal representation have been removed first).

More precisely: in the decimal representation of a number, a significant figure is any one of the digits 1, 2, 3...9 that specify the magnitude of a number. Zero (0) is a significant figure except when it appears to the left of all non-zero digits or is used solely to fill the places of unknown or discarded digits (after truncation or rounding - see later). Thus, in the number "0.00263", there are three significant figures: 2, 6, and 3. The zeroes are not significant. In the number "3809" all four of the digits are significant. In the number "46300" the digits 4, 6, and 3 are known to be significant but it is not possible to conclude anything concerning the two zeroes as they are written. This ambiguity can be removed by writing the number in terms of powers of ten. If there are three significant figures the representation becomes 4.63 \(\times 10^4 \); if there are four significant figures it becomes 4.630 \(\times 10^4 \), etc.

It is often necessary to round significant figures following a calculation. This is known as **rounding**. To round a number to \(n \) significant figures, discard all digits to the right of the \(n \)th place. This step is known as **truncation**. Then, if the left-most discarded digit is less than 5, leave the \(n \)th digit unchanged; if the left-most discarded digit is greater than or equal to 5, add 1 to the \(n \)th digit (propagating any carries to digits further to the left according to the normal rules of arithmetic and removing the final 0 if necessary). For example:

<table>
<thead>
<tr>
<th>Original</th>
<th>Rounded to (n) significant figures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=2)</td>
</tr>
<tr>
<td></td>
<td>(n=3)</td>
</tr>
<tr>
<td>3.5643</td>
<td>3.6</td>
</tr>
<tr>
<td>3.5673</td>
<td>3.6</td>
</tr>
<tr>
<td>0.49787</td>
<td>0.50</td>
</tr>
<tr>
<td>3.9999</td>
<td>4.0</td>
</tr>
<tr>
<td>9.99999</td>
<td>10</td>
</tr>
<tr>
<td>22.55</td>
<td>23</td>
</tr>
<tr>
<td>0.0019</td>
<td>0.0019</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000020</td>
</tr>
</tbody>
</table>

The same procedure MAY be followed for any value of \(n \), and we then say that a particular number is **correct to \(n \) significant figures**.
4.4.5.2 “Correct to n Decimal Places”

If the representation of a number is correct to n decimal places then the absolute difference between the value of the number and its representation (known as the “absolute error” of the representation - e_{abs}) is less than or equal to 0.5×10^{-n}. n may be a positive or negative integer or zero.

Mathematically this may be expressed as follows:

For the number X, x is a representation of X correct to n decimal places if and only if

$$e_{abs} = |X-x| \leq 0.5 \times 10^{-n}$$

or, because of rounding conventions,

$$-0.5 \times 10^{-n} \leq x-X < 0.5 \times 10^{-n}$$

Rounding, as described earlier, can be used to make a number correct to exactly n decimal places. The following table shows the representations of the number 123456.789012 correct to various numbers of decimal places:

Example 11. Correct to n decimal places

<table>
<thead>
<tr>
<th>n</th>
<th>123456.789012 correct to n decimal places</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>123000</td>
</tr>
<tr>
<td>-2</td>
<td>123500</td>
</tr>
<tr>
<td>0</td>
<td>123457</td>
</tr>
<tr>
<td>3</td>
<td>123456.789</td>
</tr>
<tr>
<td>6</td>
<td>123456.789012</td>
</tr>
</tbody>
</table>

4.5 The context element

The context element contains information about the entity being described, the reporting period and the reporting scenario, all of which are necessary for understanding a business fact captured as an XBRL item.

The context element MUST conform to the following XML Schema constraints:

```xml
<element name="context">
  <annotation>
    <documentation>
      Used for an island of context to which facts can be related.
    </documentation>
  </annotation>
  <complexType>
    <sequence>
      <element name="entity" type="xbrli:contextEntityType" />
      <element name="period" type="xbrli:contextPeriodType" />
      <element name="scenario" type="xbrli:contextScenarioType" minOccurs="0" />
    </sequence>
    <attribute name="id" type="ID" use="required" />
  </complexType>
</element>
```

In the examples, the xsi:schemaLocation attribute does not contain URIs to resolve the ISO4217 and NASDAQ namespaces. In the case of NASDAQ the examples assume that the applications that produced and will consume this instance will be able to resolve this namespace reference without the help of the xsi:schemaLocation. The ISO4217 namespace does not refer to an XML Schema that can be used for validation of the XBRL instances shown in the examples. The ISO4217 and NASDAQ URIs do not reference actual resources of the ISO or NASDAQ.
4.5.1 The id attribute

Every context element MUST include the id attribute. The content of the id attribute MUST conform to the [XML] rules for attributes with the ID type (http://www.w3.org/TR/REC-xml#NT-TokenizedType). The id attribute identifies the context (see Section 4.5) so that it may be referenced by item elements.

Example 12. IDs

<table>
<thead>
<tr>
<th>Example</th>
<th>id="C2424"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counterexample</td>
<td>id="42"</td>
</tr>
</tbody>
</table>

4.5.2 The period element

The period element contains the instant or interval of time for reference by an item element. The sub-elements of period are used to construct one of the allowed choices for representing date intervals.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>startDate, endDate</td>
<td>A period beginning and ending as specified.</td>
</tr>
<tr>
<td>instant</td>
<td>A point in time.</td>
</tr>
<tr>
<td>forever</td>
<td>An element to represent 'forever'.</td>
</tr>
</tbody>
</table>

Each of the period sub-elements uses a standard XML Schema representation of a date or duration.

The XML Schema constraints on the period element are shown below.

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"
   xmlns:xbrli="http://www.xbrl.org/2003/instance"
   xmlns:link="http://www.xbrl.org/2003/linkbase"
   targetNamespace="http://www.xbrl.org/2003/instance"
   elementFormDefault="qualified">

<simpleType name="dateUnion">
   <annotation>
      <documentation>
        The union of the date and dateTime simple types.
      </documentation>
   </annotation>
   <union memberTypes="date dateTime" />
</simpleType>

<complexType name="contextPeriodType">
   <annotation>
      <documentation>
        The type for the period element, used to describe the reporting date info.
      </documentation>
   </annotation>
   <choice>
      <sequence>
         <element name="startDate" type="xbrli:dateUnion" />
         <element name="endDate" type="xbrli:dateUnion" />
      </sequence>
      <element name="instant" type="xbrli:dateUnion" />
      <element name="forever">
         <complexType />
      </element>
   </choice>
</complexType>
</schema>
```
<table>
<thead>
<tr>
<th>Sub-element</th>
<th>XML Schema data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>instant</td>
<td>date or dateTime.</td>
</tr>
<tr>
<td>forever</td>
<td>empty</td>
</tr>
<tr>
<td>startDate</td>
<td>date or dateTime</td>
</tr>
<tr>
<td>endDate</td>
<td>date or dateTime</td>
</tr>
</tbody>
</table>

While the content of the `instant`, `startDate` and `endDate` elements are defined to use the data representation defined by ISO 8601 (as restricted by [SCHEMA-2]), XBRL adds further restrictions and constraints.

For an item element with `periodType="instant"` (See Section 5.1.1.1), the period MUST contain an `instant` element.

For an item element with `periodType="duration"`, the period MUST contain `forever` or a valid sequence of `startDate` and `endDate`.

A date, with no time part, in the content of an `startDate` element is defined to be equivalent to specifying a `dateTime` of the same date, and T00:00:00 (midnight at the end of the day).

A date, with no time part, in the `endDate` or `instant` element is defined to be equivalent to specifying a `dateTime` of the same date plus P1D and T00:00:00:00 (midnight at the end of the day but ISO8601 requires that this be specified as midnight at the start of the following day).

If supplied, the `endDate` MUST imply a point in time that is later than implied point in time of the `startDate`.

4.5.3 The entity element

The `entity` element documents the organisation (business, government department, individual, etc.) that business fact describes. The `entity` element is required content of the `context` element. The `entity` element MUST contain an `identifier` element and MAY contain a `segment` element.
4.5.3.1 identifier

An identifier element specifies a scheme for identifying business entities. The required scheme attribute contains the namespace URI of the identification scheme, providing a framework for referencing naming authorities. The element content MUST be a token that is a valid identifier within the namespace referenced by the scheme attribute. XBRL International is not a naming authority for business entities. XBRL makes no assumption about the ability of an application to resolve an identifier that may appear as element content in any particular scheme.

Example 13. Entity identifiers

<table>
<thead>
<tr>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><identifier scheme="www.nasdaq.com">SAMP</identifier></code></td>
<td>The company with NASDAQ ticker symbol SAMP.</td>
</tr>
<tr>
<td><code><identifier scheme="www.dnb.com">121064880</identifier></code></td>
<td>The company or subsidiary with D-U-N-S® number 121064880.</td>
</tr>
<tr>
<td><code><identifier scheme="www.cusip.org">41009876AB</identifier></code></td>
<td>The entity with CUSIP number 41009876AB (e.g. a mutual fund).</td>
</tr>
<tr>
<td><code><identifier scheme="www.ietf.org/URI">www.w3c.org</identifier></code></td>
<td>The non-profit organisation owning the URI www.w3c.org.</td>
</tr>
</tbody>
</table>
4.5.3.2 The segment element (optional)

The `segment` element is an optional container for additional mark-up that the preparer of an XBRL instance SHOULD use to identify the business segment more completely in cases where the entity identifier is insufficient. In general, the content of a segment will be specific to the purpose of the XBRL instance document. Elements contained by the `segment` element MUST NOT be defined in the `http://www.xbrl.org/2003/instance` namespace. Also, they MUST NOT be in the substitution group for elements defined in the `http://www.xbrl.org/2003/instance` namespace. The `segment` element MUST NOT be empty.

The XML Schema restrictions on the `segment` element are shown below.

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:xbrli="http://www.xbrl.org/2003/instance"
  xmlns:link="http://www.xbrl.org/2003/linkbase"
  targetNamespace="http://www.xbrl.org/2003/instance"
  elementFormDefault="qualified">
  <element name="segment">
    <complexType>
      <sequence>
        <any namespace="##other" processContents="lax" minOccurs="1"
          maxOccurs="unbounded" />
      </sequence>
    </complexType>
  </element>
</schema>
```

Example 14. Using the segment element

```xml
<xbrl xmlns="http://www.xbrl.org/2003/instance"
  xmlns:my="http://www.someCompany.com/segment">
  <context id="c1">
    <entity>
      <!-- required content -->
      <identifier scheme="www.dnb.com">121064880</identifier>
      <!-- optional content -->
      <segment>
        <my:stateProvince>MI</my:stateProvince>
      </segment>
    </entity>
    <period><instant>2002-12-01</instant></period>
  </context>
</xbrl>
```

<!-- Company specific segment sub-element -->

```xml
<schema targetNamespace="http://www.someCompany.com/segment"
  xmlns:my="http://www.someCompany.com/segment"
  xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
  <simpleType name="stateProvinceType">
    <restriction base="token">
      <enumeration value="MI"/>
      <enumeration value="ON"/>
    </restriction>
  </simpleType>
  <element name="stateProvince" type="my:stateProvinceType"/>
</schema>
```

Meaning: The preparer has used a `<segment>` to indicate that the business facts relate to operations in the state of Michigan. The company’s own XML Schema defines the `stateProvince` element as including just Michigan and Ontario.
Creators of taxonomies should anticipate that XBRL instance creators will define elements to insert in the segment element to represent one or more dimensions of distinction such as:
- Organisational structure, such as the corporate headquarters and individual subsidiaries of an entity;
- Regional decomposition, such as operations in Asia, Europe, and North America;
- Functional distinctions, such as results from continuing and discontinued operations;
- Product distinctions, such as operations relating to fishing, forestry and farming;
- Operational distinctions such as recurring vs. non-recurring revenues or new subscriptions vs. renewals.

It is up to the preparer of the document to provide the proper namespace support and xsi:schemaLocation hints necessary to ensure that the segment element is properly validated by an XML Schema validation process.

4.5.4 The scenario element (optional)

Business facts can be reported as actual, budgeted, restated, pro forma, etc. For internal reporting purposes, there can be an even greater variety of additional metadata that preparers want to associate with items. The optional scenario element allows additional valid mark-up (see note above regarding segment) to be included for this purpose.

Elements contained by the scenario element MUST NOT be defined in the http://www.xbrl.org/2003/instance namespace. Also, they MUST NOT be in the substitution group for elements defined in the http://www.xbrl.org/2003/instance namespace. The scenario element MUST NOT be empty.

The XML Schema restrictions on the scenario element are shown below.

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"
       xmlns:xbrli="http://www.xbrl.org/2003/instance"
       xmlns:link="http://www.xbrl.org/2003/linkbase"
       targetNamespace="http://www.xbrl.org/2003/instance"
       elementFormDefault="qualified">

  <complexType name="contextScenarioType">
    <annotation>
      <documentation>
        Used for the scenario under which fact have been reported.
      </documentation>
    </annotation>
    <sequence>
      <any namespace="##other" processContents="lax"
            minOccurs="1" maxOccurs="unbounded"/>
    </sequence>
  </complexType>
</schema>
```

Example 15. Use of the scenario element

```xml
<xbrl xmlns="http://www.xbrl.org/2003/instance"
      xmlns:fid="http://www.someInsuranceCo.com/scenarios"
      xmlns:other="http://www.example.com">
  <context id="c1">
    <entity>
      <identifier scheme="http://www.example.com"></identifier>
    </entity>
    <scenario>
      <other:bestEstimate/>
      <fid:dwSlice>
        <fid:residence>MA</fid:residence>
        <fid:nonSmoker>true</fid:nonSmoker>
        <fid:minAge>34</fid:minAge>
        <fid:maxAge>49</fid:maxAge>
      </fid:dwSlice>
    </scenario>
  </context>
</xbrl>
```
Meaning: The preparer has used a `<scenario>` to indicate that the reported values relate to a "best estimate" scenario for non-smokers residing in Massachusetts of the specified age group.

It is up to the preparer of the instance to provide the proper namespace support and `xsi:schemaLocation` hints necessary to ensure that the `scenario` element is properly validated by an XML Schema validation process.

The scenario and segment sub-elements have exactly the same structure, but are used for two different purposes. Segment is used to specify some component of the business entity. Scenario is used to document the circumstances surrounding the measurement of a set of facts, and like the segment element, its content will be application specific.

Creators of business reporting taxonomies should anticipate that XBRL instance creators will define elements to insert in the `scenario` element to represent dimensions of distinction such as:

- Assuming certain valuations of assets or future revenue streams;
- Actual, adjusted, estimated, forecasted, or reported as of a certain date;
- Assuming a particular foreign currency exchange rate.

4.6 The unit element

The `unit` element specifies the units in which a numeric item has been measured. The content of the unit element MUST be either a simple unit of measure expressed with a single `measure` element or a complex unit of measure based on a mathematical combination of `measure` elements where the mathematical operations are expressed with the `operator` element.

Some examples of simple units of measure are EUR (Euros), meters, kilograms and FTE (Full Time Equivalents). Some examples of complex units of measures are Earnings per Share and Square Feet.

The XML Schema restrictions on the `unit` element are shown below.
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xbrli="http://www.xbrl.org/2003/instance"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 targetNamespace="http://www.xbrl.org/2003/instance"
 elementFormDefault="qualified">

<annotation>
 <documentation>
 XML Schema components contributing to the unit element
 </documentation>
</annotation>

<element name="measure" type="QName" />

<complexType name="measuresType">
 <annotation>
 <documentation>
 A collection of sibling measure elements
 </documentation>
 </annotation>
 <sequence>
 <element ref="xbrli:measure" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
</complexType>

<element name="divide">
 <annotation>
 <documentation>
 Element used to represent division in units
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="unitNumerator" type="xbrli:measuresType" />
 <element name="unitDenominator" type="xbrli:measuresType" />
 </sequence>
 </complexType>
</element>

<element name="unit">
 <annotation>
 <documentation>
 Element used to represent units information about numeric items
 </documentation>
 </annotation>
 <complexType>
 <choice>
 <element ref="xbrli:measure" minOccurs="1" maxOccurs="unbounded" />
 <element ref="xbrli:divide" />
 </choice>
 <attribute name="id" type="ID" use="required" />
 </complexType>
</element>

</schema>

4.6.1 The id attribute

Every unit element MUST include an id attribute. The value of the id attribute MUST conform to the [XML](http://www.w3.org/TR/REC-xml#NT-TokenizedType) rules for attributes with the ID type. The id attribute identifies the unit (see Section 4.6) so that it may be referenced by item elements.
4.6.2 The measure element

The measure element is used to describe a basic unit of measure. The content of the measure element MUST be a QName comprised of a namespace prefix and a local part separated by a colon (":"). The namespace prefix MUST resolve to a namespace that is in scope for the measure element. The local part MUST be an NCName.

Some facts have restrictions on the content of the unit element and the value of the measure element that is a consequence of the type of concept they represent. These restrictions are set out in the following table.

<table>
<thead>
<tr>
<th>Item type</th>
<th>implies unit MUST contain</th>
</tr>
</thead>
<tbody>
<tr>
<td>monetaryItemType or derived from monetaryItemType</td>
<td>A single measure element where the local part of the measure MUST be an ISO 4217 currency designation [ISO] that was valid during the time designated by the period element of the item’s context. The namespace prefix MUST resolve to: http://www.xbrl.org/2003/iso4217</td>
</tr>
<tr>
<td>sharesItemType or derived from sharesItemType</td>
<td>A single measure element. The local part of the measure MUST be "shares" and the namespace prefix that MUST resolve to http://www.xbrl.org/2003/instance</td>
</tr>
</tbody>
</table>

For facts that are rates, percentages or ratios where the numerator and the denominator are in the same units, the context MUST have a unit element with a single measure element. The local part of the measure MUST be "pure" with a namespace prefix that resolves to a namespace of "http://www.xbrl.org/2003/instance". Rates, percentages or ratios must be reported using decimal or scientific notation rather than percentages where the value has been multiplied by 100.

A complex unit of measure can be expressed by showing the mathematical relationships between other units of measure using a sequence of sibling measure elements (which imply a multiplication of those measure elements) and a single divide element (which implies division of a numerator by a denominator).

4.6.3 The divide element

The divide element MUST contain a numerator element followed by a denominator element.

4.6.4 The unitNumerator and unitDenominator elements

The unitNumerator element and the unitDenominator element must both contain one or more measure elements.

Units MUST be expressed in their simplest possible form. The divide element MUST not contain any measure elements in its unitNumerator that are s-equal to measure elements in its unitDenominator.

Some examples of the unit element are shown in the following example.

Example 16. Use of the unit element

<table>
<thead>
<tr>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
</table>
A pure number, such as % revenue change.

Square feet – feet multiplied by feet.

A number of shares.

A head count (number of Full Time Equivalents).

Earnings per share (EPS) measured in Euros per share.

Illegal because the same measure occurs in both the numerator and the denominator of the divide element.

The "ISO4217" namespace prefix used in these examples must resolve to "http://www.xbrl.org/2003/iso4217".

The "xbrli" namespace prefix used in these examples must resolve to "http://www.xbrl.org/2003/instance".

The "myuom" namespace prefix is not defined by the XBRL specification, but it must resolve to a namespace that is in scope for the measure element. This namespace may be a URL that identifies a resource that describes the units of measure that are contained by the namespace. Although there are no XBRL semantics on how to interpret this information, it may provide assistance to creators of instance documents. For example, if the myuom namespace prefix resolves to "http://www.mycomp.com/myuom" then this namespace could be a URL that contains an HTML document that lists the available units of measure.

Some complex units of measure MAY be expressed as a simple unit of measure. For example, square feet may be expressed as a complex unit of measure showing a multiplication of two basic measures of feet as shown in the following example. It is at the discretion of the instance document creator to use a unit element that describes the unit of measure to the appropriate degree.

Example 17. Simple and complex unit of measure comparison

<table>
<thead>
<tr>
<th>Simple Unit of Measure</th>
<th>Complex Unit of Measure</th>
</tr>
</thead>
</table>
| `<unit id="u1">
 <measure>myuom:sqrft</measure>
</unit>` | `<unit id="u4">
 <measure>myuom:feet</measure>
 <measure>myuom:feet</measure>
</unit>` |

Note: The namespace prefix myuom must resolve to a valid namespace. It should be understood that the measures in this example "sqrft", and "feet" are contained in this namespace.

A measure element with a namespace prefix that resolves to the "http://www.xbrl.org/2003/instance" namespace MUST have a local part of either "pure" or "share". A measure element with a namespace prefix that resolves to the "http://www.xbrl.org/2003/iso4217" namespace MUST have a local part that is a valid
ISO4217 currency code [ISO] that was valid during the time designated by the period element of the item's context.

4.7 Tuples

While most business facts can be independently understood, some facts are dependent on each other for proper understanding, especially if multiple occurrences of that fact are being reported. For example, in reporting the management of a company, each manager’s name has to be properly associated with the manager’s correct title. Such sets of facts (manager’s title/manager’s name) are called tuples.

Tuples have complex content and MAY contain both items and other tuples. Like the item element, the tuple element is abstract. The following rules apply to tuples:

- All tuples MUST be members of the substitution group that has tuple as its head. Therefore, all item and tuples must be declared globally, because only global elements can be in a substitution group.
- All tuple syntax definitions MUST NOT include a periodType or balance attribute (See Sections 5.1.1.1 and 5.1.1.2 respectively);
- To be in the substitution group of tuple, a tuple must have a type that is derived from tupleType. The type tupleType is final with respect to extension, so all tuples MUST be derived only by restriction from tupleType.
- Tuples cannot have mixed content, or simple content, and any additional attributes must be drawn from a non-XBRL namespace.
- Tuples MUST NOT be declared abstract.
- Descendant elements of a tuple MUST NOT contain any anonymous type declarations.
- The restriction element of the tuple declaration MUST NOT contain elements other than sequence, choice, all, any, anyAttribute and element.
Example 18. Defining a tuple as a restriction of tupleType

An abbreviated example taxonomy schema:

```xml
<schema targetNamespace="http://mycompany.com/xbrl/taxonomy"
     xmlns="http://www.w3.org/2001/XMLSchema"
     xmlns:s="http://mycompany.com/xbrl/taxonomy"
     xmlns:xbrli="http://www.xbrl.org/2003/instance">
  <element name="managementName" type="xbrli:tokenItemType"
           xbrli:periodType="instant"
           substitutionGroup="xbrli:item"/>
  <element name="managementTitle" type="xbrli:tokenItemType"
           xbrli:periodType="instant"
           substitutionGroup="xbrli:item"/>
  <element name="managementAge" type="xbrli:nonNegativeIntegerItemType"
           xbrli:periodType="instant" substitutionGroup="xbrli:item"/>
  <element name="managementInformation" substitutionGroup="xbrli:tuple">
    <complexType>
      <complexContent>
        <restriction base="xbrli:tupleType">
          <sequence>
            <element ref="s:managementName"/>
            <element ref="s:managementTitle"/>
            <element ref="s:managementAge" minOccurs="0"/>
          </sequence>
        </restriction>
      </complexContent>
    </complexType>
  </element>
</schema>
```

An XBRL instance of the taxonomy (context and unit elements and linkbaseRef elements not shown):

```xml
<xbrl xmlns="http://www.xbrl.org/2003/instance"
     xmlns:s="http://mycompany.com/xbrl/taxonomy">
  <s:managementInformation>
    <s:managementName contextRef="c1">Haywood Chenokitov</s:managementName>
    <s:managementTitle contextRef="c1">President</s:managementTitle>
    <s:managementAge contextRef="n1" unitRef="u1">42</s:managementAge>
  </s:managementInformation>
  <s:managementInformation>
    <s:managementName contextRef="c1">Miriam Minderbender</s:managementName>
    <s:managementTitle contextRef="c1">CEO</s:managementTitle>
  </s:managementInformation>
</xbrl>
```

The **all**, sequence and choice elements MAY appear in tuples. For example, consider information that is disclosed in tax filings regarding real estate and other properties:

Example 19. Elements describing business properties held and disposed

<table>
<thead>
<tr>
<th>Label</th>
<th>Element Name</th>
<th>Balance</th>
<th>Substitution Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
<td>property</td>
<td></td>
<td>tuple</td>
</tr>
<tr>
<td>Property description</td>
<td>description</td>
<td></td>
<td>item</td>
</tr>
<tr>
<td>Date property acquired</td>
<td>dateAcquired</td>
<td></td>
<td>item</td>
</tr>
<tr>
<td>Date property disposed of</td>
<td>dateDisposedOf</td>
<td></td>
<td>item</td>
</tr>
<tr>
<td>Property fair market value</td>
<td>fairMarketValue</td>
<td></td>
<td>item</td>
</tr>
</tbody>
</table>
Although the description and date acquired are relevant for any property, the property either has a fair market value or has already been disposed of, but not both.

Example 20. Hierarchy in a tuple

```
property
  | ++-- description
  | ++-- dateAcquired
  | ++-- [choice]
  |      ++-- dateDisposedOf
  |      ++-- fairMarketValue
```

Example: tuples associate concepts that cannot be understood independently and repeat within an XBRL instance. Multiple occurrences of a tuple within an XBRL instance are distinguished by having different content and contexts.

The content models for tuples can be defined using only XML Schema. Content models for tuples are not defined or modified by any of the XBRL linkbases.

4.8 Equality predicates relevant to detecting duplicate items and tuples

There are several different senses of “equal” that are relevant to detection of duplicates in XBRL instances: Identical, Structure equal (s-equal), Parent equal (p-equal), Value equal (v-equal), [XPATH] equal (x-equal), Context equal (c-equal) and Unit equal (u-equal). These different equality predicates are polymorphic and formally defined in a recursive fashion.

Table 4. Equality predicate definitions.

<table>
<thead>
<tr>
<th>Argument Types</th>
<th>Predicates</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>identical</td>
<td>Exactly the same XML node.</td>
</tr>
<tr>
<td>sequence</td>
<td>s-equal, v-equal, c-equal</td>
<td>Every node in one sequence is {s-equal, v-equal, c-equal} to the node in the same position in the other sequence.</td>
</tr>
<tr>
<td>set</td>
<td>s-equal, v-equal, c-equal</td>
<td>Every node in one set can be paired with a different node in the other set to which it is {s-equal, v-equal, c-equal} and no nodes in either set are left un-paired.</td>
</tr>
<tr>
<td>any XML object</td>
<td>x-equal</td>
<td>An XML object A is x-equal to an XML object B if the [XPATH] expression A = B returns the value true (see www.w3.org/TR/xpath.html#booleans)</td>
</tr>
<tr>
<td>text</td>
<td>s-equal</td>
<td>The two text strings are x-equal</td>
</tr>
<tr>
<td>attribute</td>
<td>s-equal</td>
<td>The two attributes have local names and namespaces that are s-equal and have values that are x-equal</td>
</tr>
<tr>
<td>Element (except those handled separately in this list)</td>
<td>s-equal</td>
<td>Not identical, and their element local names and namespaces are both s-equal, and the set of their attributes are s-equal, and the sequence of text and sub-element contents are s-equal.</td>
</tr>
<tr>
<td>entity</td>
<td>s-equal</td>
<td>identifier elements are s-equal, and segment elements are s-equal (with any missing segment treated as s-equal to an empty segment element).</td>
</tr>
<tr>
<td>startDate</td>
<td>s-equal</td>
<td>The implied date/time is equal, according to the rules set out in Section 4.5.2</td>
</tr>
<tr>
<td>endDate</td>
<td>s-equal</td>
<td>The implied date/time is equal, according to the rules set out in Section 4.5.2</td>
</tr>
<tr>
<td>instant</td>
<td>s-equal</td>
<td>The implied date/time is equal, according to the rules set out in Section 4.5.2</td>
</tr>
<tr>
<td>Argument Types</td>
<td>Predicates</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>period</td>
<td>s-equal</td>
<td>One of the following conditions applies: 1. both elements have a child forever element, or 2. their child instant elements are s-equal, or 3. their child startDate elements are s-equal and their child endDate elements are s-equal</td>
</tr>
<tr>
<td>measure</td>
<td>s-equal</td>
<td>The namespace prefix in the content of the two measure elements resolves to the same namespace and the local names in the content of the two measure elements are s-equal.</td>
</tr>
<tr>
<td>operator</td>
<td>s-equal</td>
<td>The first child elements of the operator element are s-equal and the second child elements of the operator element are s-equal.</td>
</tr>
<tr>
<td>unit</td>
<td>s-equal</td>
<td>The descendant operator and measure elements are s-equal.</td>
</tr>
<tr>
<td>context</td>
<td>s-equal</td>
<td>period elements are s-equal, and entity elements are x-equal, and scenario elements are s-equal.</td>
</tr>
<tr>
<td>item</td>
<td>s-equal</td>
<td>they are c-equal, and they are u-equal, and precision attributes are s-equal, and decimals attributes are s-equal, and the text of their contents is s-equal after converting any values of numeric items to a decimal representation.</td>
</tr>
<tr>
<td>tuple</td>
<td>s-equal</td>
<td>The sets of (item and tuple) children are s-equal.</td>
</tr>
<tr>
<td>item</td>
<td>p-equal</td>
<td>Nodes are children of the identical parent.</td>
</tr>
<tr>
<td>tuple</td>
<td>p-equal</td>
<td>Nodes are children of the identical parent.</td>
</tr>
<tr>
<td>item</td>
<td>c-equal</td>
<td>not s-equal, and their contextRef attributes identify contexts that are identical or s-equal.</td>
</tr>
<tr>
<td>item</td>
<td>u-equal</td>
<td>not s-equal, and their unitRef attributes identify units of measurement that are identical or s-equal.</td>
</tr>
<tr>
<td>numeric items</td>
<td>v-equal</td>
<td>A and B are v-equal if and only if all the following conditions apply: i. A and B are c-equal ii. the numeric values AN and BN are x-equal where AN is obtained by rounding the content of A to N significant figures and BN is obtained by rounding the content of B to N significant figures where N is the lowest of: a. the specified or inferred precision for A and b. the specified or inferred precision for B</td>
</tr>
<tr>
<td>Argument Types</td>
<td>Predicates</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| numeric items of type fractionItemType or a type derived from fractionItemType by restriction | v-equal | **A** and **B** are v-equal if and only if all the following conditions apply:
 i. **A** and **B** are c-equal
 ii. **AN** is x-equal to **BN** and **AD** is x-equal to **BD**
 where:
 a. **AN** is the numerator and **AD** is the denominator of the normal form (defined below) of **A** and
 b. **BN** is the numerator and **BD** is the denominator of the normal form of **B**.
 For any item **F** of type fractionItemType or a type derived from fractionItemType by restriction, the normal form has numerator **FN** and denominator **FD** such that **FN** and **FD** are integers and have no integer common factor and there exists a number **H** such that multiplying **FN** by **H** gives the numerator of **F** and multiplying **FD** by **H** gives the denominator of **F**. |
| numeric items, one of which is of type fractionItemType or a type derived from fractionItemType by restriction and the other of which is not non-numeric item | v-equal | v-equal is always false for such combinations of numeric items |
| non-numeric item | v-equal | **A** and **B** are v-equal if and only if all the following conditions apply
 i. **A** and **B** are c-equal
 ii. [XPATH] normalize-space(AC) = normalize-space(BC) where **AC** is the content of **A** and **BC** is the content of **B**. |
| item | duplicate | The items are not identical and they have element local names that are s-equal and their elements are defined in the same namespace and the items are p-equal, and the items are c-equal. |
| tuple | duplicate | The tuple elements are not identical and they have element local names that are s-equal and their elements are defined in the same namespace and they are p-equal, and their sets of child tuples are duplicate tuples, and their sets of child items are v-equal. |

The following extended example illustrates positive and negative examples of each of the above predicates.
Example 21. Duplicate items, tuples and contexts

<table>
<thead>
<tr>
<th>element</th>
<th>An XBRL instance containing three contexts (two of which are duplicates of each other) and doubly nested tuples. Several of the elements are named in the left column.</th>
</tr>
</thead>
</table>
| b customer | `<s:analysis>`
| b name | `<s:customer>`
| b gross | `<s:name contextRef="np3">Acme</s:name>`
| b returns | `<s:gross unitRef="u3" contextRef="np3" precision="4">3001</s:gross>`
| | `<s:returns unitRef="u3" contextRef="np3" precision="3">100</s:returns>`
| | `<s:net unitRef="u3" contextRef="np3" precision="4">2900</s:net>`
| c customer | `<s:customer>`
| c name | `<s:name contextRef="Xnnp3X">Acme</s:name>`
| c gross | `<s:gross unitRef="u3" contextRef="np3" precision="3">3000</s:gross>`
| | `<s:returns unitRef="u3" contextRef="np3" precision="3">100</s:returns>`
| | `<s:net unitRef="u3" contextRef="np3" precision="4">2900</s:net>`
| d customer | `<s:customer>`
| d returns | `<s:name contextRef="np3">Acme</s:name>`
| | `<s:gross unitRef="u3" contextRef="np3" precision="4">3000</s:gross>`
| | `<s:returns unitRef="u3" contextRef="np3" precision="3">500</s:returns>`
| | `<s:net unitRef="u3" contextRef="np3" precision="4">2500</s:net>`
| e customer | `<s:customer>`
| f name | `<s:name contextRef="np3">Bree</s:name>`
| g name | `<s:name contextRef="Xnnp3X">Bree</s:name>`
| | `<s:gross unitRef="u3" contextRef="np3" precision="4">3000</s:gross>`
| | `<s:returns unitRef="u3" contextRef="np3" precision="3">200</s:returns>`
| | `<s:net unitRef="u3" contextRef="np3" precision="4">2800</s:net>`
| h totalGross | `<s:totalGross unitRef="u3" contextRef="np3" precision="3">12000</s:totalGross>`
| | `</s:analysis>`
| | `<!-- One Redundant Context Xnnp3X = period,2003 -->`
| | `<!-- without the empty scenario element -->`
| np3 | `<context id="np3">`
| | `<entity>`
| | `<identifier scheme="www.nasdaq.com">SAMP</identifier>`
| | `<segment/>`
| | `</entity>`
| | `<period>`
| | `<startDate>2003-01-01</startDate>`
| | `<endDate>2003-12-31</endDate>`
| | `</period>`
| | `<scenario/>`
| | `</context>`
| u3 | `<context id="u3">`
| Xnnp3X | `<unit id="u3"><measure>ISO4217:USD</measure></unit>`
| | `<context id="Xnnp3X">`
| | `<entity>`
| | `<identifier scheme="www.nasdaq.com">SAMP</identifier>`
| | `</entity>`
| | `<period>`
| | `<startDate>2003-01-01</startDate>`
Note that, notwithstanding the lack of a calculation linkbase in this example, the total of 12000 in "h totalGross" is the most precise value that can be derived from sum of the values of gross for the 4 customers (3001+3000+3000+3000=12001 but the most precise value can be correct to only 3 significant figures because c gross has precision="3" and is hence 12000)

Example 22. Predicates for detecting duplicates

<table>
<thead>
<tr>
<th>Node 1</th>
<th>Node 2</th>
<th>Type</th>
<th>Predicate</th>
<th>True</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>np3</td>
<td>Xnnp3X</td>
<td>context</td>
<td>Identical</td>
<td>no</td>
<td>different nodes</td>
</tr>
<tr>
<td>np3</td>
<td>Xnnp3X</td>
<td>context</td>
<td>s-equal</td>
<td>yes</td>
<td>entity and period are s-equal and the empty scenario elements are ignored</td>
</tr>
<tr>
<td>f name</td>
<td>g name</td>
<td>item</td>
<td>s-equal</td>
<td>no</td>
<td>different context id’s np3 and Xnnp3X</td>
</tr>
<tr>
<td>f name</td>
<td>g name</td>
<td>item</td>
<td>p-equal</td>
<td>yes</td>
<td>same parent element</td>
</tr>
<tr>
<td>f name</td>
<td>g name</td>
<td>item</td>
<td>c-equal</td>
<td>yes</td>
<td>equal contexts np3 and Xnnp3X</td>
</tr>
<tr>
<td>f name</td>
<td>g name</td>
<td>item</td>
<td>v-equal</td>
<td>yes</td>
<td>equal content “Bree”</td>
</tr>
<tr>
<td>f name</td>
<td>g name</td>
<td>item</td>
<td>Duplicates</td>
<td>yes</td>
<td>p-equal and c-equal</td>
</tr>
<tr>
<td>b name</td>
<td>c name</td>
<td>item</td>
<td>s-equal</td>
<td>no</td>
<td>they are in different customer tuples</td>
</tr>
<tr>
<td>b name</td>
<td>c name</td>
<td>item</td>
<td>p-equal</td>
<td>no</td>
<td>different parents</td>
</tr>
<tr>
<td>b name</td>
<td>c name</td>
<td>item</td>
<td>c-equal</td>
<td>yes</td>
<td>they both have context np3 and unit u3</td>
</tr>
<tr>
<td>b name</td>
<td>c name</td>
<td>item</td>
<td>v-equal</td>
<td>yes</td>
<td>“3001” with precision 3 equals “3000”</td>
</tr>
<tr>
<td>b name</td>
<td>c name</td>
<td>item</td>
<td>Duplicates</td>
<td>no</td>
<td>not p-equal, so v-equal doesn’t matter</td>
</tr>
<tr>
<td>b gross</td>
<td>c gross</td>
<td>item</td>
<td>s-equal</td>
<td>no</td>
<td>different parents</td>
</tr>
<tr>
<td>b gross</td>
<td>c gross</td>
<td>item</td>
<td>p-equal</td>
<td>no</td>
<td>different parents</td>
</tr>
<tr>
<td>b gross</td>
<td>c gross</td>
<td>item</td>
<td>c-equal</td>
<td>yes</td>
<td>they both have context np3 and unit u3</td>
</tr>
<tr>
<td>b gross</td>
<td>c gross</td>
<td>item</td>
<td>v-equal</td>
<td>yes</td>
<td>“3001” with precision 3 equals “3000”</td>
</tr>
<tr>
<td>b gross</td>
<td>c gross</td>
<td>item</td>
<td>Duplicates</td>
<td>no</td>
<td>not p-equal, so v-equal doesn’t matter</td>
</tr>
<tr>
<td>b customer</td>
<td>c customer</td>
<td>tuple</td>
<td>s-equal</td>
<td>no</td>
<td>different context ids np3 and Xnnp3X</td>
</tr>
<tr>
<td>b customer</td>
<td>c customer</td>
<td>tuple</td>
<td>p-equal</td>
<td>yes</td>
<td>same parent “a analysis”</td>
</tr>
<tr>
<td>b customer</td>
<td>c customer</td>
<td>tuple</td>
<td>c-equal</td>
<td>n/a</td>
<td>c-equal doesn’t apply to tuples</td>
</tr>
<tr>
<td>b customer</td>
<td>c customer</td>
<td>tuple</td>
<td>v-equal</td>
<td>n/a</td>
<td>v-equal doesn’t apply to tuples</td>
</tr>
<tr>
<td>b customer</td>
<td>c customer</td>
<td>tuple</td>
<td>Duplicates</td>
<td>yes</td>
<td>p-equal, and child items name, gross, returns and net are all v-equal</td>
</tr>
<tr>
<td>b returns</td>
<td>d returns</td>
<td>item</td>
<td>s-equal</td>
<td>no</td>
<td>different values</td>
</tr>
<tr>
<td>b returns</td>
<td>d returns</td>
<td>item</td>
<td>p-equal</td>
<td>no</td>
<td>parents are b customer and d customer</td>
</tr>
<tr>
<td>b returns</td>
<td>d returns</td>
<td>item</td>
<td>c-equal</td>
<td>yes</td>
<td>both have context np3 and unit u3</td>
</tr>
<tr>
<td>b returns</td>
<td>d returns</td>
<td>item</td>
<td>v-equal</td>
<td>no</td>
<td>b value is 100, d value is 500</td>
</tr>
<tr>
<td>b returns</td>
<td>d returns</td>
<td>item</td>
<td>Duplicates</td>
<td>no</td>
<td>not p-equal, so v-equal doesn’t matter</td>
</tr>
</tbody>
</table>
The equality predicates in the definition of duplicate items are ones of *equal location*, not *equal content*. In addition, it should be noted that attributes other contextRef, unitRef, precision and decimals MUST be ignored for the purposes of this comparison (a consequence of the definition of s-equality for items). For example, additional id attributes do not distinguish otherwise equal items. Whether items appear within a tuple or not also impacts on whether they are duplicates, because the definition of duplicate items also carries the proviso that they have the same parent (i.e. are p-equal).

When determining whether two numeric items are v-equal (a predicate that is used in the definition of various other equality type predicates) it is necessary to take into consideration the values of precision for the two numeric items. If precision has not been specified for either of the two numeric items it is necessary to infer a value for it according to the rules in Section 4.4.4.

The XBRL definition of duplicate items and tuples encompasses many, but not all, inconsistent and redundant data items in an XBRL instance. Tuples that are not duplicates according to the XBRL definition might still have semantic inconsistencies. In the example above, customer elements “c” and “d” appear to contain data about the same customer, in the same context, but have inconsistent data; XBRL does not detect these as duplicate tuples even though to a human reader an element such as name indicates a “unique key” that is sufficient to determine that these two tuples are, in effect, c-equal (same context, different content).

4.9 Footnotes

While tuples deal with certain regularly structured associations between elements that might appear in an XBRL instance, many documents include irregularly structured associations between facts. For instance, several facts may all be linked to the sentence “Including the effects of the merger with Example.com.” To express these irregular linkages, XBRL uses the footnoteLink element to describe these irregularly structured associations between facts in an XBRL instance.

4.9.1 The footnoteLink element

The footnoteLink element is an extended link. Its generic syntax is documented in Section 3.5.3. It contains locators, resources and arcs that describe irregular relationships between facts in an XBRL instance.

The XML Schema constraints on the footnoteLink element are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns:xsi="http://www.xbrl.org/2001/XLink"
 elementFormDefault="qualified">
  <element name="footnoteLink">
    <annotation>
      <documentation>

```

footnote extended link element definition
</documentation>
</annotation>
<complexType>
<complexContent>
<restriction base="xl:extendedType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="xl:title"/>
<element ref="link:documentation"/>
<element ref="link:loc"/>
<element ref="link:footnoteArc"/>
<element ref="link:footnote"/>
</choice>
</restriction>
</complexContent>
</complexType>
</element>
</schema>

Example 23. A footnote in an XBRL instance

<?xml version="1.0"?>
<xbrl
xmlns="http://www.xbrl.org/2003/instance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xlink="http://www.w3.org/1999/xlink"

<fr:propertyPlantEquipmentGross unitRef="u1"
contextRef="c1">1200</fr:propertyPlantEquipmentGross>
<fr:assetsTotal id="f1" unitRef="u1" contextRef="c1">2600</fr:assetsTotal>
<fr:equityTotal id="f3" unitRef="u1" contextRef="c1">1100</fr:equityTotal>
<fr:liabilitiesTotal id="f2" unitRef="u1"
contextRef="c1">2600</fr:liabilitiesTotal>

<link:footnoteLink
xlink:type="extended" xlink:title="1">
<link:footnote
xlink:type="resource"
xlink:label="footnote1"
xlink:role="http://www.xbrl.org/2003/role#footnote"
xml:lang="en">Including the effects of the merger.</link:footnote>
<link:footnote
xlink:type="resource"
xlink:label="footnote1"
xlink:role="http://www.xbrl.org/2003/role#footnote"
xml:lang="fr">Y compris les effets de la fusion.</link:footnote>
<link:loc xlink:type="locator" xlink:label="fact1" xlink:href="#f1"/>
<link:loc xlink:type="locator" xlink:label="fact1" xlink:href="#f2"/>
<link:loc xlink:type="locator" xlink:label="fact1" xlink:href="#f3"/>
<link:footnoteArc xlink:type="arc"
xlink:from="fact1" xlink:to="footnote1"
xlink:title="view explanatory footnote"
xlink:arcrole="http://www.xbrl.org/arc#fact-footnote"/>
</link:footnoteLink>
<context id="c1">
<entity>
<identifier scheme="http://www.un.org/">Example plc</identifier>
</entity>
Meaning: The one footnoteArc connects three facts to two footnotes. The two footnotes are in different languages. The xlink:title attribute has been used on the footnoteArc element to document the nature of the resource being made accessible from the facts.

4.9.1.1 Locators in footnoteLink elements

footnoteLink elements MUST NOT contain locators that are not loc elements. loc elements are documented in detail in Section 3.5.3.6. The loc element, when used in a footnoteLink, MUST only point to items or tuples in the same XBRL instance that contains the loc element itself.

4.9.1.2 The footnote element

The footnote element is the only resource allowed in footnoteLink elements. Generic resources are documented in detail in Section 3.5.3.7. The content of footnote resources is restricted relative to generic resources. Specifically, footnote resources MUST be mixed content containing a simple string, or a fragment of XHTML or a mixture of both.

The XML Schema constraints on the footnote element are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
    xmlns="http://www.w3.org/2001/XMLSchema"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    xmlns:xl="http://www.xbrl.org/2001/XLink"
    elementFormDefault="qualified">

  <element name="footnote" substitutionGroup="xl:resource">
    <annotation>
      <documentation>
        Definition of the reference resource element
      </documentation>
    </annotation>
    <complexType mixed="true">
      <complexContent mixed="true">
        <extension base="xl:resourceType">
          <sequence>
            <any namespace="http://www.w3.org/1999/xhtml" processContents="skip"
              minOccurs="0" maxOccurs="unbounded" />
          </sequence>
          <attribute ref="xml:lang" use="required" />
        </extension>
      </complexContent>
    </complexType>
  </element>

</schema>
```
4.9.1.2.1 The xml:lang attribute on footnote elements

All footnote resources MUST have an xml:lang attribute identifying the language used for the content of the footnote. The value of the xml:lang attribute MUST conform to [XML] rules. (See http://www.w3.org/TR/2000/REC-xml-20001006#sec-lang-tag for details).

4.9.1.3 The footnoteArc element

The footnoteArc element has the same syntax as generic extended link arcs. See Section 3.5.3.8 for details.

The XML Schema constraints on the footnoteArc element are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
   xmlns="http://www.w3.org/2001/XMLSchema"
   xmlns:link="http://www.xbrl.org/2003/linkbase"
   xmlns:xl="http://www.xbrl.org/2001/XLink"
   elementFormDefault="qualified">
  <element name="footnoteArc" type="xl:arcType" substitutionGroup="xl:arc">
    <annotation>
      <documentation>
        Concrete arc for use in footnote extended links.
      </documentation>
    </annotation>
  </element>
</schema>
```

4.9.1.3.1 xlink:arcrole attributes on footnoteArc elements

The value of the xlink:arcrole attribute MUST be URI that indicates the meaning of the arc.

One standard arc role value has been defined for arc role values on footnoteArc elements. Its value is:

http://www.xbrl.org/arc/fact-footnote

This arc role value is for use on a footnoteArc from item or tuple locators to footnote resources and it indicates that the footnote conveys human-readable information about the fact or facts.

4.9.1.3.2 xlink:title attribute (optional)

The xlink:title attribute MAY be used to convey information about the relationship between facts and related footnotes to users navigating between those facts and footnotes. The content of the xlink:title attribute MUST be a string. The xlink:title attribute content MAY be made visible to users of XLink-enabled applications.

If the xlink:title attribute is insufficient for this purpose (for example, if the information needs to be provided in several languages), then titles, as defined in Section 3.5.3.8.7, MAY be used.

5 XBRL Taxonomies

Section 3.1 provides an overview of XBRL taxonomies.

A taxonomy is defined as an XML Schema [SCHEMA-1] and the set of directly referenced extended links (via the linkbaseRef element; see Section 5.1.2) and any extended links that are nested within the XML Schema. The XML Schemas in taxonomies are referred to, in this specification, as “taxonomy schemas.”
5.1 Taxonomy schemas

A taxonomy MUST include a taxonomy schema. A taxonomy schema MUST be a valid instance of an XML Schema.

If extended links are included in a taxonomy, the taxonomy schema MUST contain `linkbaseRef` elements that point to their linkbases (See Section 5.1.2) or the extended links MUST be nested in linkbases contained in the taxonomy schema itself.

Taxonomy schemas MUST import the XBRL instance schema if they define concepts (elements in the item or tuple substitution groups) because the XBRL instance schema defines the abstract elements `item` and `tuple`. However, taxonomy schemas do not need to import the XBRL instance schema (for example, if their only purpose is to define syntax for segments and scenarios in contexts).

It will be necessary to include namespace declarations for several other schemas in taxonomy schemas, such as the namespace for XML Schema itself.

Example 24. A skeletal taxonomy schema showing linkbase references

```xml
  xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:xhtml="http://www.w3.org/1999/xhtml"
  xmlns:xbrli="http://www.xbrl.org/2003/instance"
  xmlns:link="http://www.xbrl.org/XLink/xbrllinkbase"
  xmlns:xlink="http://www.w3.org/1999/xlink">
  <annotation>
    <appinfo>
      <link:linkbaseRef xlink:type="simple"
        xlink:href="linkbase_presentation.xml"
        xlink:role="http://www.xbrl.org/2003/role#presentationLinkbaseRef"
        xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"/>
      <link:linkbaseRef xlink:type="simple"
        xlink:href="linkbase_calculation.xml"
        xlink:role="http://www.xbrl.org/2003/role#calculationLinkbaseRef"
        xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"/>
      <link:linkbaseRef xlink:type="simple"
        xlink:href="linkbase_definition.xml"
        xlink:role="http://www.xbrl.org/2003/role#definitionLinkbaseRef"
        xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"/>
      <link:linkbaseRef xlink:type="simple"
        xlink:href="linkbase_label.xml"
        xlink:role="http://www.xbrl.org/2003/role#labelLinkbaseRef"
        xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"/>
      <link:linkbaseRef xlink:type="simple"
        xlink:href="linkbase_reference.xml"
        xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"/>
    </appinfo>
  </annotation>
  <import namespace="http://www.xbrl.org/2003/instance"
    schemaLocation="xbrl-instance.xsd"/>
</schema>
```

XBRL taxonomies MAY be constructed to refer to other taxonomies; this extensibility of taxonomies is a critical feature of XBRL. In order to realise the complete potential of the
technology, taxonomies must be extensible to accommodate virtually any business entity’s unique reporting requirements while maintaining significant comparability across entities.

XBRL taxonomy schemas MAY import other taxonomy schemas and reference additional XBRL linkbases as appropriate to achieve this extensibility.

Taxonomy schemas MAY also define custom role values and custom arc role values for use in linkbases. See Section 5.1.2 and 5.1.4 for details.

5.1.1 Concept definitions

Concepts are defined in taxonomy schemas. Each concept defined in a taxonomy schema is uniquely identified by an element’s syntax definition in the taxonomy schema. To correspond to a concept definition, an XML Schema element definition has to specify the element’s name, a substitution group, and type. All element names MUST be unique within a given taxonomy schema. The substitution group MUST imply that the element is in the substitution group for the XBRL item or tuple element. The element MAY also include any of the other XML Schema attributes that can be used on an element syntax definitions, including abstract and nillable.

An element defining the syntax for a concept SHOULD also have an id attribute. Providing an id attribute simplifies the content of the xlink:href attribute on linkbase loc elements (See Section 3.5.1.2). Note that some XML Schema validators require uniqueness of all id attribute values in a taxonomy schema and in all XML schemas that it imports or includes, directly or indirectly. To increase robustness to such interpretations of the XML Schema specification [SCHEMA-2], care SHOULD be taken to limit the extent to which id attributes values are likely to clash with id attribute values in related schemas. In the example below, this has been done by prefixing the element name with an additional string, “ci_” when choosing the value of the id attribute for each element.

Example 25. Typical element definitions in a taxonomy schema

```
<schema xmlns="http://www.w3.org/2001/XMLSchema"
         xmlns:xbrli="http://www.xbrl.org/2003/instance">
    <element id="ci_preferredDividends"
             name="preferredDividends"
             xbrli:periodType="duration"
             type="xbrli:monetaryItemType"
             substitutionGroup="xbrli:item" nillable="true"/>
    <element id="ci_stockBasedCompensationPolicy"
             name="stockBasedCompensationPolicy"
             xbrli:periodType="duration"
             type="xbrli:stringItemType"
             substitutionGroup="xbrli:item" nillable="true"/>
</schema>
```

Meaning: Two concepts have been defined, one associated with the preferredDividends element and the other associated with the stockBasedCompensationPolicy element. Both concepts can be represented by nil-value items in instance documents. The preferredDividends concept is required to appear in XBRL instances as a numeric item with a duration period in its context and the stockBasedCompensationPolicy concept is to appear in XBRL instances as a non-numeric item with an instant period in its context.

XBRL also defines two attributes, periodType and balance, that MAY be used on the element syntax definitions. These attributes facilitate greater control over the way that the concepts. Their definitions are provided in the following sections.

5.1.1.1 The periodType attribute

Some elements are associated with concepts that are measurable at an instant in time while others measure change over a period of time.
The XML Schema constraints on the `periodType` attribute are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xl="http://www.xbrl.org/2001/XLink"
elementFormDefault="qualified">
  <attribute name="periodType">
    <annotation>
      <documentation>
The periodType attribute (restricting the period for XBRL items)
</documentation>
    </annotation>
    <simpleType>
      <restriction base="token">
        <enumeration value="instant" />
        <enumeration value="duration" />
      </restriction>
    </simpleType>
  </attribute>
</schema>
```

The `periodType` attribute MUST be used on elements in the substitution group for the `item` element. A value of `instant` for the `periodType` attribute indicates that the element, when used in an XBRL instance, MUST always be associated with a context in which the period is an instant. A value of `duration` indicates that the element, when used in an XBRL instance, MUST always be associated with a context in which the period is a duration, expressed using the `startDate` and `endDate` elements or expressed using the `forever` element.

Example 26. Instant and duration concept definitions

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xbrli="http://www.xbrl.org/2003/instance">
  <element id="a1" name="changeInRetainedEarnings"
xbrli:periodType="duration"
type="xbrli:monetaryItemType" substitutionGroup="xbrli:item"/>
  <element id="a2" name="fixedAssets"
xbrli:balance="debit"
xbrli:periodType="instant"
type="xbrli:monetaryItemType" substitutionGroup="xbrli:item"/>
</schema>
```

5.1.1.2 The balance attribute (optional)

An optional `balance` attribute MAY be added to the definition of an element if its type is `monetaryItemType` or derived from `monetaryItemType`. The `balance` attribute MUST NOT be used on items that do not have type equal to the `monetaryItemType` or to a type that is derived from `monetaryItemType`.

If the idea of debit/credit balance is appropriate to the element, it MAY be indicated using this attribute.

The XML Schema constraints on the `balance` attribute are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xl="http://www.xbrl.org/2001/XLink"
elementFormDefault="qualified">
  <attribute name="balance">
    <annotation>
    </annotation>
  </attribute>
</schema>
```
The balance attribute is important to applications that consume numbers related to accounting concepts such as asset, liability, equity, revenue and expense. The balance attribute (debit/credit) provides a definitive declaration of how values in XBRL instances are to be authored and interpreted when the debit/credit designation is provided.

Example 27. Using the balance element to indicate normal debit and credit balances

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xbrli="http://www.xbrl.org/2003/instance">
  <element
    id="netIncome" name="netIncome" xbrli:balance="credit"
xbrli:periodType="duration"
type="xbrli:monetaryItemType" substitutionGroup="xbrli:item"/>
  <element
    id="fixedAssets" name="fixedAssets" xbrli:balance="debit"
xbrli:periodType="instant"
type="xbrli:monetaryItemType" substitutionGroup="xbrli:item"/>
</schema>
```

Example 28. A concept appearing with positive and negative values in an XBRL instance

```xml
<xbrl xmlns:my="http://my.namespace.com">
  <my:netIncome contextRef="c1">500</my:netIncome>
  <my:netIncome contextRef="c2">-200</my:netIncome>
</xbrl>
```

Meaning: A profit of 500 and a loss of 200 in different contexts.

Table 5. Correct signage in an XBRL instance

<table>
<thead>
<tr>
<th>Taxonomy element</th>
<th>Account balance</th>
<th>Sign of XBRL instance element value</th>
</tr>
</thead>
<tbody>
<tr>
<td>balance="credit"</td>
<td>Credit</td>
<td>Positive or zero</td>
</tr>
<tr>
<td>balance="credit"</td>
<td>Debit</td>
<td>Negative or zero</td>
</tr>
<tr>
<td>balance="debit"</td>
<td>Debit</td>
<td>Positive or zero</td>
</tr>
<tr>
<td>balance="debit"</td>
<td>Credit</td>
<td>Negative or zero</td>
</tr>
</tbody>
</table>

The numeric representation of a debit or credit item will normally (that is, more often than not) be positive in an XBRL instance.

Table 6. Constraints among the balance attribute and calculation arc weights

<table>
<thead>
<tr>
<th>balance attribute of "from" item</th>
<th>balance attribute of "to" item</th>
<th>illegal values of the weight attribute on calculationArc</th>
</tr>
</thead>
<tbody>
<tr>
<td>debit</td>
<td>debit</td>
<td>Negative (< 0)</td>
</tr>
<tr>
<td>debit</td>
<td>credit</td>
<td>Positive (> 0)</td>
</tr>
<tr>
<td>credit</td>
<td>debit</td>
<td>Positive (> 0)</td>
</tr>
<tr>
<td>credit</td>
<td>credit</td>
<td>Negative (< 0)</td>
</tr>
</tbody>
</table>
5.1.1.3 Item data types

All item types MUST be one of the types listed below or derived from one of them by restriction. This set of XBRL provided base types covers the appropriate subset of XML Schema built-in types (both primitive and derived) \[SCHEMA-2\] as well as 4 types that have been identified as having particular relevance to the domain space addressed by XBRL (monetaryItemType, sharesItemType, pureItemType and fractionItemType) and hence explicitly defined in the XBRL namespace. All these types have simple content except for fractionItemType. Therefore, an item type in a taxonomy can never have complex content unless it is derived by restriction from fractionItemType.

The \[SCHEMA-1\] mechanism that enables the explicit assertion of the type of an element in an instance document (http://www.w3.org/TR/xmlschema-1/index.html#xsi_type) MUST NOT be applied to any item or tuple in an XBRL instance. The type of items and tuples MUST be specified in the appropriate taxonomy schema instead.

Table 7. Defined item types

<table>
<thead>
<tr>
<th>XBRL Item Type</th>
<th>Base type</th>
<th>unitRef attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimalItemType</td>
<td>decimal</td>
<td>yes</td>
</tr>
<tr>
<td>floatItemType</td>
<td>float</td>
<td>yes</td>
</tr>
<tr>
<td>doubleItemType</td>
<td>double</td>
<td>yes</td>
</tr>
</tbody>
</table>

The following numeric types are all based on the XML Schema built-in types that are derived by restriction from decimal.

<table>
<thead>
<tr>
<th>XBRL Item Type</th>
<th>Base type</th>
<th>unitRef attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>integerItemType</td>
<td>integer</td>
<td>yes</td>
</tr>
<tr>
<td>nonPositiveIntegerItemType</td>
<td>nonPositiveInteger</td>
<td>yes</td>
</tr>
<tr>
<td>negativeIntegerItemType</td>
<td>negativeInteger</td>
<td>yes</td>
</tr>
<tr>
<td>longItemType</td>
<td>long</td>
<td>yes</td>
</tr>
<tr>
<td>intItemType</td>
<td>int</td>
<td>yes</td>
</tr>
<tr>
<td>shortItemType</td>
<td>short</td>
<td>yes</td>
</tr>
<tr>
<td>byteItemType</td>
<td>byte</td>
<td>yes</td>
</tr>
<tr>
<td>nonNegativeIntegerItemType</td>
<td>nonNegativeInteger</td>
<td>yes</td>
</tr>
<tr>
<td>unsignedLongItemType</td>
<td>unsignedLong</td>
<td>yes</td>
</tr>
<tr>
<td>unsignedIntItemType</td>
<td>unsignedInt</td>
<td>yes</td>
</tr>
<tr>
<td>unsignedShortItemType</td>
<td>unsignedShort</td>
<td>yes</td>
</tr>
<tr>
<td>unsignedByteItemType</td>
<td>unsignedByte</td>
<td>yes</td>
</tr>
<tr>
<td>positiveIntegerItemType</td>
<td>positiveInteger</td>
<td>yes</td>
</tr>
</tbody>
</table>

The following numeric types are all types that have been identified as having particular relevance to the domain space addressed by XBRL and are hence included in addition to the built-in types from XML Schema.

<table>
<thead>
<tr>
<th>XBRL Item Type</th>
<th>Base type</th>
<th>unitRef attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>monetaryItemType</td>
<td>xbrli:monetary</td>
<td>yes</td>
</tr>
<tr>
<td>sharesItemType</td>
<td>xbrli:shares</td>
<td>yes</td>
</tr>
<tr>
<td>pureItemType</td>
<td>xbrli:pure</td>
<td>yes</td>
</tr>
<tr>
<td>fractionItemType</td>
<td>complex type with the numerator being a float and the denominator being a non-zero, non-infinite float (xbrli:nonZeroNonInfiniteFloat)</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XBRL Item Type</th>
<th>Base type</th>
<th>unitRef attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>stringItemType</td>
<td>string</td>
<td>no</td>
</tr>
<tr>
<td>booleanItemType</td>
<td>Boolean</td>
<td>no</td>
</tr>
<tr>
<td>hexBinaryItemType</td>
<td>hexBinary</td>
<td>no</td>
</tr>
<tr>
<td>base64BinaryItemType</td>
<td>base64Binary</td>
<td>no</td>
</tr>
<tr>
<td>anyURIItemType</td>
<td>anyURI</td>
<td>no</td>
</tr>
<tr>
<td>uriItemType</td>
<td>anyURI</td>
<td>no</td>
</tr>
<tr>
<td>QNameItemType</td>
<td>QName</td>
<td>no</td>
</tr>
<tr>
<td>durationItemType</td>
<td>duration</td>
<td>no</td>
</tr>
<tr>
<td>dateTimeItemType</td>
<td>dateTime</td>
<td>no</td>
</tr>
<tr>
<td>timeItemType</td>
<td>time</td>
<td>no</td>
</tr>
</tbody>
</table>
The following non-numeric types are all based on the XML Schema built-in types that are derived by restriction (and/or list) from string.

<table>
<thead>
<tr>
<th>Type</th>
<th>Base type</th>
<th>attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>gYearMonthItemType</td>
<td>gYearMonth</td>
<td>no</td>
</tr>
<tr>
<td>gYearItemType</td>
<td>gYear</td>
<td>no</td>
</tr>
<tr>
<td>gMonthDayItemType</td>
<td>gMonthDay</td>
<td>no</td>
</tr>
<tr>
<td>gDayItemType</td>
<td>gDay</td>
<td>no</td>
</tr>
<tr>
<td>gMonthItemType</td>
<td>gMonth</td>
<td>no</td>
</tr>
<tr>
<td>normalizedStringItemType</td>
<td>normalizedString</td>
<td>no</td>
</tr>
<tr>
<td>tokenItemType</td>
<td>token</td>
<td>no</td>
</tr>
<tr>
<td>languageItemType</td>
<td>language</td>
<td>no</td>
</tr>
<tr>
<td>NameItemType</td>
<td>Name</td>
<td>no</td>
</tr>
<tr>
<td>NCNameItemType</td>
<td>NCName</td>
<td>no</td>
</tr>
</tbody>
</table>

Some of these types, especially some of those that XML Schema has defined for backward compatibility with Document Type Definitions ("DTDs"), may never be needed for any XBRL application, but all are provided by XBRL for completeness and compatibility with XML Schema.

Example 29. Deriving an enumerated item type

```xml
<schema targetNamespace="http://www.someCompany.com/taxonomy"
         xmlns:my="http://www.someCompany.com/taxonomy"
         xmlns:xbrli="http://www.xbrl.org/2003/instance"
         xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

  <complexType name="stateProvinceItemType">
    <simpleContent>
      <restriction base="xbrli:tokenItemType">
        <enumeration value="MI"/>
        <enumeration value="ON"/>
      </restriction>
    </simpleContent>
  </complexType>

  <element name="stateProvince" id="my_stateProvince" xbrli:periodType="instant"
           substitutionGroup="xbrli:item" type="my:stateProvinceItemType"/>

</schema>
```

Meaning: Deriving new item types by restriction from the XBRL provided item types is the only allowed method for XBRL taxonomy schemas. Earlier, in Example 14, the stateProvinceType was defined and used to define a sub-element of segment. Here, instead we define an XBRL concept appearing in the company’s own taxonomy; note that the previously defined simple type is not used.

5.1.1.3.1 The monetary, shares and pure data types

The XBRL instance schema defines the monetary data type, which specialises the XML Schema decimal type. All numeric elements in XBRL Taxonomies that represent monetary values MUST use the monetaryItemType data type or one derived from it. The shares data type represents share-based values and the pure data type represents growth rates, percentages, and other measures where an implicit numerator and denominator are expressed in the same units. The fractionItemType can be used where a numerator and denominator are explicit.

```xml
<schema xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:xbrli="http://www.xbrl.org/2003/instance"
        xmlns:link="http://www.xbrl.org/2003/linkbase"
        targetNamespace="http://www.xbrl.org/2003/instance"
        elementFormDefault="qualified">
```

5.1.1.3.2 The fractionItemType data type

The values of some facts that are to be reported may be known exactly but it may not be possible to represent them exactly using any of the built-in data types provided for in XML Schema. Examples are fractional values whose decimal representation contains recurring digits such as 1/3 (whose decimal representation is 0.333333...). To enable XBRL instances to report these exact values, a complex type, fractionItemType, is provided. All values of fractionItemType are exact. The attributes, precision and decimals, MUST not occur on items with the fractionItemType.

The XML Schema constraints on the fractionItemType are shown below.

```xml
<complexType name="fractionItemType" final="extension">
  <sequence>
    <element name="numerator" type="decimal" />
    <element name="denominator" type="xbrli:nonZeroDecimal" />
  </sequence>
  <attribute name="contextRef" type="IDREF" use="required" />
  <attribute name="id" type="ID" use="optional" />
  <anyAttribute namespace="##other" processContents="lax" />
</complexType>
```
Example 30. Representing fractions

<table>
<thead>
<tr>
<th>Fractional value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td><code><myTaxonomy:oneThird id="oneThird" contextRef="numC1"></code></td>
</tr>
<tr>
<td></td>
<td><code><numerator>1</numerator></code></td>
</tr>
<tr>
<td></td>
<td><code><denominator>3</denominator></code></td>
</tr>
<tr>
<td></td>
<td><code></myTaxonomy:oneThird></code></td>
</tr>
</tbody>
</table>

The numerator element MUST contain numeric values. The denominator element MUST contain a numeric value that is non-zero and finite.

5.1.2 The linkbaseRef element

The linkbaseRef element MAY occur at the XPath \[XPATH\] path "schema/annotation/appinfo/*" in a taxonomy schema. In a taxonomy schema, the linkbaseRef element identifies a linkbase that MUST always participate in a DTS if that taxonomy schema participates in the DTS.

The syntax of the linkbaseRef element in taxonomy schemas is identical to the syntax of the linkbaseRef element in XBRL instances. For more details, see Section 4.3.

5.1.3 The roleType element

Role types constrain the allowed values for the xlink:role attribute on the [XLINK] simple link, extended link and resource elements. Role types MUST be either a standard role type, defined by this specification, or be a custom role type, defined in a taxonomy schema using the roleType element. The roleType element MUST be located at the [XPATH] path "schema/annotation/appinfo". A custom role type for a given element and with a given name MUST be defined only once within a taxonomy schema with a given target namespace. The role types that are defined by this specification MUST NOT be redefined using the roleType element.

The value of the xlink:role attribute MUST be an absolute URI. For the definitionLink, calculationLink, presentationLink, labelLink, referenceLink, footnoteLink, label, reference, and footnote elements, the value of the xlink:role attribute MUST be composed of a URI with a fragment identifier and MUST be either a standard role type defined by this specification or a custom role type. For custom defined role types, the URI portion of the value of the xlink:role attribute MUST be the taxonomy schema namespace where the value of the name attribute of the roleType element MUST match the value of the fragment identifier and the value of the usedOn attribute of the roleType element MUST match the element name of the parent element of the xlink:role attribute.

Example 31. Defining a new role type

Example: The role type definition of a role: "http://www.mycomp.com/role#endnote" to indicate those footnotes in an XBRL instance that ought to be presented only at the end of a document.

```xml
<schema targetNamespace="http://www.mycomp.com/role"
  xmlns:link="http://www.xbrl.org/2003/linkbase"
  xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
  <annotation>
    <appinfo>
      <link:roleType usedOn="link:footnote" name="endnote">
        <link:definition>
          A footnote that should be displayed only at the end of a document
        </link:definition>
      </link:roleType>
    </appinfo>
  </annotation>
</schema>
```
This `roleType` element defines a role that could be used as follows:

```
<link:footnote xlink:role="http://www.mycomp.com/role#endnote" xlink:type="resource" xlink:label="endnote1">
  Excluding the effects of the merger and contingent liabilities.
</link:footnote>
```

The XML Schema constraints on the `roleType` element and its sub-elements are set out below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
  xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:link="http://www.xbrl.org/2003/linkbase"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  xmlns:xl="http://www.xbrl.org/2001/XLink"
  elementFormDefault="qualified">
  <element name="definition" type="string">
    <annotation>
      <documentation>
        The element to use for human readable definition
        of custom roles and arc roles.
      </documentation>
    </annotation>
  </element>
  <element name="roleType">
    <annotation>
      <documentation>
        The `roleType` element definition - used to define custom
        role values in XBRL extended links.
      </documentation>
    </annotation>
    <complexType>
      <sequence>
        <element ref="link:definition" minOccurs="0" />
      </sequence>
      <attribute name="name" type="NCName" use="required" />
      <attribute name="usedOn" type="QName" use="required" />
    </complexType>
  </element>
</schema>
```

5.1.3.1 The `roleType` element

The `roleType` element is the element containing the role type definition. The `roleType` element describes the role type by defining the name of the role type, declaring the element that the role type may be used on, and providing a human-readable definition of the role type.

5.1.3.2 The `name` attribute on `roleType` elements

The `name` attribute is a required attribute that contains the value of the fragment ID for the role type being defined. When the custom role type is used, the `xlink:role` attribute contains an absolute URI with a fragment identifier. This fragment identifier MUST match the value of the `name` attribute on the `roleType` element.

5.1.3.3 The `usedOn` attribute on `roleType` elements

The `usedOn` attribute is a required attribute that identifies the element that MAY use this role type as the value of its `xlink:role` attribute. The `usedOn` attribute MUST have a QName value. Elements that do not have the local-name and the namespace implied by the QName MUST NOT use this custom role type as their role value.
5.1.3.4 The definition element on roleType elements (optional)

The definition element is an optional sub element of the roleType element. Its content is simple content that contains a string giving meaning to the role type.

5.1.4 The arcroleType element

Arc role values are used on the [XLINK] arc elements as value of the xlink:arcrole attribute. Arc role values MUST be either a standard arc role value defined by this specification or be a custom defined arc role value. Custom defined arc role values MUST be defined using the arcroleType element. The arcroleType element MUST be located at the [XPATH] path "schema/annotation/appinfo". An arc role value for a given arc and with a given name MUST be defined only once within a namespace. The arc role values that are defined by this specification MUST NOT be redefined using the arcroleType element.

The value of the xlink:arcrole attribute MUST be a URI. For the definitionArc, calculationArc, presentationArc, labelArc, referenceArc and footnoteArc the value of the xlink:arcrole attribute MUST be composed of a URI with a fragment identifier and MUST be either a standard arc role value defined by this specification or a taxonomy defined arc role value. For taxonomy defined arc role values, the URI portion of the value of the xlink:arcrole attribute MUST be the taxonomy schema namespace where the value of the name attribute of the arcroleType element MUST match the value of the fragment identifier and the value of the usedOn attribute of the arcroleType element MUST match the element name of the parent element of the xlink:arcrole attribute.

Example 32. Defining a new arc role value

<table>
<thead>
<tr>
<th>Example: The definition of an arc role value: "http://www.mycomp.com/role#average-item" that connects items in the calculation linkbase</th>
</tr>
</thead>
</table>
| <schema targetNamespace="http://www.mycomp.com/role"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <annotation>
 <appinfo>
 <link:arcroleType name="average-item" usedOn="link:calculationArc"
 cyclesAllowed="none"/>
 </appinfo>
 </annotation>
</schema> |
| This arcroleType describes an arc role value for a calculation relationship. It would appear on an arc as <calculationArc xlink:arcrole="http://www.mycomp.com/role#average-item" .../> |

The XML Schema constraints on the arcroleType element and its sub-elements are set out below.
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 elementFormDefault="qualified">
 <element name="definition" type="string">
 <annotation>
 <documentation>
The element to use for human readable definition of custom roles and arc roles.
 </documentation>
 </annotation>
 </element>
 <element name="arcroleType">
 <annotation>
 <documentation>
The arcroleType element definition - used to define custom arc role values in XBRL extended links.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="link:definition" minOccurs="0" />
 </sequence>
 <attribute name="name" type="NCName" use="required" />
 <attribute name="usedOn" type="QName" use="required" />
 <attribute name="cyclesAllowed" use="required">
 <simpleType>
 <restriction base="NMTOKEN">
 <enumeration value="any" />
 <enumeration value="undirected" />
 <enumeration value="none" />
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
</schema>

5.1.4.1 The arcroleType element
The arcroleType element is the element containing the definition of the custom arc role type. The arcroleType element describes the arc role value by defining the name of the arc role value, declaring the element that the arc role type may be used on, declaring the type of cycles that are allowed for a network of arcs using the arc role type, and providing a human-readable definition of the meaning of the arc role type.

5.1.4.2 The name attribute on arcroleType elements
The name attribute is a required attribute that contains the value of the fragment ID for the arc role type being defined. When the taxonomy defined arc role type is used, the xlink:arcrole attribute contains a URI with a fragment identifier. This fragment identifier MUST match the value of the name attribute on the arcroleType element.

5.1.4.3 The usedOn attribute on arcroleType elements
The usedOn attribute is a required attribute that identifies the element that MAY use this arc role type as the value of its xlink:arcrole attribute. The usedOn attribute MUST have a QName
value. Elements that do not have the local-name and the namespace implied by the QName MUST NOT use this custom arc role type as their arc role value.

5.1.4.4 The cyclesAllowed attribute

The cyclesAllowed attribute is a required attribute that identifies the type of cycles that are allowed in a network of arcs as defined in Section 5.2. Fully conformant XBRL processors must detect and signal networks of arcs with custom arc role types that violate the requirements documented with this attribute.

The valid values of the cyclesAllowed attribute are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>A network that allows any cycles does not limit the kinds of relationships that can be expressed.</td>
</tr>
<tr>
<td>undirected</td>
<td>A network that allows undirected cycles MAY have any number of directed paths between any two nodes in the network, but MUST NOT allow a node to have a path back to itself. A path is a set of arcs between nodes.</td>
</tr>
<tr>
<td>none</td>
<td>A network that allows no cycles MUST have only one direct path between any two nodes.</td>
</tr>
</tbody>
</table>

5.1.4.5 The definition element on arcroleType elements (optional)

The definition element is an optional sub element of the arcroleType element. Its content is simple content that contains a string giving human-readable meaning to the arc role type.

5.2 Taxonomy linkbases

The extended links in a taxonomy provide additional information about concepts by expressing relationships between concepts (inter-concept relationships) or associating concepts with documentation about their meaning. The extended links in a taxonomy are grouped into linkbases, as defined in Section 3.5.2. Taxonomies currently use five different kind of extended links: definition, calculation, presentation, label and reference. The first three types of extended link express inter-concept relationships, while the last two relate concepts to their documentation.

An example of an inter-concept relationship is a calculation linkbase that expresses a relationship between "cash" and "current assets" where "cash" sums up to "current assets". An example of a relationship between a concept and additional documentation is a label linkbase that expresses a relationship between the concept "cash" and a human readable label in English, such as "Cash" and additional labels for cash in other languages. Also, the label linkbase may contain additional labels for different purposes, such as a label of "Opening Cash Balance", "Closing Cash Balance" and "Total Cash". Although the concept is always referred to as "cash" the labels provided multiple ways of tagging the concept for display purposes.

The linkbases MAY exist in a separate document from the taxonomy schema, although they MAY alternatively be embedded in the taxonomy schema at the XPath \[XPATH\] path "schema/annotation/appinfo/link:linkbase/**". When a linkbase in a taxonomy is not embedded in the taxonomy schema document, the taxonomy schema MUST contain a linkbaseRef to point to the document containing the linkbase.

There are five kinds of extended links used in XBRL taxonomies.

- Relation links (calculation, definition, and presentation) manage the relations between taxonomy elements.
- Label links manage the text associated with taxonomy elements in various languages.
- Reference links manage the references to authoritative literature (either online or paper).
Each of these extended links MUST be held in an XLink document container. The XLink document container MUST be a linkbase element located either:

1. at the path "schema/annotation/appinfo/*" in the taxonomy schema; or,
2. as the root element of a separate document.

In the presentation, calculation, and definition extended links in a DTS, arcs organise XBRL concepts into networks of relationships that associate each concept with other concepts. In label and reference extended links, arcs associate a resource (label or reference) with an XBRL concept.

The presentation, definition, and calculation extended links are not required to specify the formatting of a report derived from a collection of XBRL instances. However, XBRL instance consuming applications are free to use the semantic information provided in a DTS to format such reports, as they deem appropriate.

A network of arcs is defined, for a DTS, as the set of defined and non-prohibited arcs (See Section 3.5.3.8.5 for a definition of arc prohibition) in the DTS that:

- have same the local name, namespace and xlink:arcrole attribute value; and
- are contained in extended link elements with the same local name, namespace, and xlink:role attribute value.

If a network of arcs has no arc that identifies a particular concept by the xlink:to attribute, then that concept is a root concept in that network. The presentation of root concepts is application dependent.

Taxonomy authors may or may not find it useful to keep the networks that can be expressed using presentation, calculation and definition extended links in some kind of correspondence.

One or more arcs in a network can form a cycle (that is, an element may reach itself by following some number of arcs). Depending on the semantics of the relationships in a network, different types of cycles may be semantically coherent, or they may represent a semantic inconsistency that processing applications MAY choose to detect. Cycles occur when a node in the network of arcs can reach itself by traversing arcs either with regard (directed) or without regard (undirected) to the direction of each individual arc. Fully conformant XBRL processors MUST detect cycles that constitute semantic inconsistencies. Semantically inconsistent cycles are identified for each network that is given semantic meaning in this specification.
Example 33. Types of cycles

To illustrate networks of relationships between concepts, consider the following concepts that might be defined in a taxonomy (note that the label would not be part of the element; labels are just shown to provide clarity):

<table>
<thead>
<tr>
<th>Label</th>
<th>Element Name</th>
<th>Balance</th>
<th>Substitution Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Statement</td>
<td>incomeStatement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... other taxonomy elements</td>
<td>(various)</td>
<td>(various)</td>
<td>(various)</td>
</tr>
<tr>
<td>Net Income Before Tax</td>
<td>netIncomeBeforeTax</td>
<td>credit</td>
<td>item</td>
</tr>
<tr>
<td>Taxes</td>
<td>taxes</td>
<td>debit</td>
<td>item</td>
</tr>
<tr>
<td>Net Income After Tax</td>
<td>netIncomeAfterTax</td>
<td>credit</td>
<td>item</td>
</tr>
<tr>
<td>Extraordinary Items</td>
<td>extraordinaryItems</td>
<td>debit</td>
<td>item</td>
</tr>
<tr>
<td>Net Income</td>
<td>netIncome</td>
<td>credit</td>
<td>item</td>
</tr>
<tr>
<td>Performance Measures</td>
<td>performanceMeasures</td>
<td></td>
<td>item</td>
</tr>
</tbody>
</table>

Suppose that the mathematical relations that exist between the concepts expressed as elements within the taxonomy as documented by some source are as follows:

1. \(\text{netIncomeAfterTax} = \text{netIncomeBeforeTax} - \text{taxes} \)
2. \(\text{netIncome} = \text{netIncomeAfterTax} - \text{extraordinaryItems} \)
The calculation linkbase might then contain calculation extended links to facilitate computation of \texttt{netIncome}, \texttt{netIncomeBeforeTax}, \texttt{netIncomeAfterTax}, per the formulae above and expressed in a tree hierarchy in an application.

Example 35. Hierarchy in a calculation linkbase

```
netIncome
 |   +--+(-1)-- extraordinaryItems
 |     |   +--+ netIncomeAfterTax
 |     |     |   +--+(-1)-- taxes
 |     |     |     |   +--+(+1)-- netIncomeBeforeTax
```

Example: Calculation hierarchy in which each item contributes to a summation.

Arcs are annotated with the numeric weight in parentheses. The weight indicates the weight attribute value of the calculation link expressing how the element contributes to the calculation/summation.

The definition linkbase might also contain definition extended links that relate concepts to other concepts. In the case below, \texttt{performanceMeasures} is an element defined in the taxonomy and the types of performance measures are: \texttt{netIncome}, \texttt{netIncomeBeforeTax}, and \texttt{netIncomeAfterTax}. The \texttt{xlink:arcrole} of the link, an absolute URI such as \texttt{http://www.xbrl.org/2003/role#general-special}, explains the type of definition relationship of the relation. See Section 3.5.3.8.4 for details.

Example 36. Hierarchy of general-special arcs in a definition linkbase

```
performanceMeasures
 |   ++-1-- netIncome
 |     |   ++-2-- netIncomeBeforeTax
 |     |     |   ++-3-- netIncomeAfterTax
```

Example: Definition hierarchy in which various concepts are defined to be “Performance Measures.”

Arcs are annotated with their “order” attribute used for presenting the hierarchy.

Presentation links are used to arrange taxonomy elements into a hierarchy and specific ordering. In general, different uses will require different sets of presentation links. There is one set of users – taxonomy developers and domain experts working with a taxonomy – whose presentation needs remain relevant throughout the entire lifecycle of a taxonomy. In some sense this view is “context free” as opposed to the presentation of instance data that is “context dependent.” When taxonomies are published they cannot contain all possible presentations but they MAY contain at least one “developer’s eye” view, which is “context free” in the sense that it does not need to take XBRL instance contexts into account. The presentation linkbase in this example could contain presentation links to organise concepts to look like line items in a financial statement. Another presentation linkbase could contain links to organise a subset of these same concepts into a data collection form.
Example 37. Hierarchy in a presentation linkbase

incomeStatement	Example: Presentation hierarchy that mimics the order in which line items might appear on an income statement.
	This view might be used in applications to present taxonomies to users of the application. The arcs are annotated with their "order" attribute.
--- 1...13 -- other line items, e.g., revenue	
---- 14 ---- netIncomeBeforeTaxes	
---- 15 ---- taxes	
---- 16 ---- netIncomeAfterTaxes	
---- 17 ---- extraordinaryItems	
---- 18 ---- netIncome	

In these examples, the three linkbases are trees, but they need not be strict trees at all. This is particularly true for the calculation linkbase. There are several ways to calculate movements in Equity, for example: one might net the issuing and retirement of common stock, net the issuing and retirement of preferred stock, and add those two – or one might add up all the issuance of stock whether common or preferred, and net it against the retirement of common and preferred. Although the calculations are hierarchical (that is, there are no loops), they do not form a tree.

5.2.1 The linkbase element

The linkbase element is fully documented in Section 3.5.2.

5.2.2 The labelLink element

The labelLink element is an extended link. Its generic syntax is documented in Section 3.5.3. It is intended to contain relationships between concepts and textual documentation and labels for those concepts.

The XML Schema constraints on the labelLink element are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 elementFormDefault="qualified">

 <element name="labelLink">
   <annotation>
     <documentation>
       label extended link element definition
     </documentation>
   </annotation>
   <complexType>
     <complexContent>
       <restriction base="xl:extendedType">
         <choice minOccurs="0" maxOccurs="unbounded">
           <element ref="xl:title" />
           <element ref="link:documentation" />
           <element ref="link:loc" />
           <element ref="link:labelArc" />
           <element ref="link:label" />
         </choice>
       </restriction>
     </complexContent>
   </complexType>
 </element>
```

5.2.2.1 Locators in labelLink elements

`labelLink` elements MUST NOT contain locators that are not `loc` elements. `loc` elements are documented in detail in Section 3.5.3.6. The `loc` element, when used in a `labelLink`, MUST only point to concepts in taxonomy schemas.

5.2.2.2 The label element

Although each taxonomy defines a single set of elements representing a set of business reporting concepts, the human readable XBRL documentation for those concepts, including labels (strings used as human readable names for each concept) and other explanatory documentation, is contained in a resource element in the label linkbase. The resource has an indication of the language used (via the XML standard `lang` attribute) and an optional classification of the purpose of the documentation (via a `role` attribute).

This ability to provide documentation in a variety of different languages enables XBRL concepts to be used in a multilingual environment because business reports can be presented to users in their language of choice.

Documentation of XBRL concepts MUST be contained in `label` elements in `labelLink` extended links. The `label` element is an XLink resource. Its generic syntax is documented in Section 3.5.3.7. The `label` element MUST have the standard `xml:lang` attribute, and it MUST appear inside a `labelLink` element. This content of the `label` element is mixed, allowing a simple string, a fragment of XHTML or a combination of both.

XBRL processors are NOT REQUIRED to detect or display concept documentation that appears anywhere other than in a `label` element.

The XML Schema constraints on the `label` element are shown below.

```
</schema targetNamespace="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 elementFormDefault="qualified">
  <element name="label" substitutionGroup="xl:resource">
    <annotation>
      <documentation>
        Definition of the label resource element.
      </documentation>
    </annotation>
    <complexType mixed="true">
      <complexContent mixed="true">
        <extension base="xl:resourceType">
          <sequence>
            <any namespace="http://www.w3.org/1999/xhtml" processContents="skip"
             minOccurs="0" maxOccurs="unbounded" />
          </sequence>
          <attribute ref="xml:lang" use="required" />
        </extension>
      </complexContent>
    </complexType>
  </element>
</schema>
```
Example 38. Label resource

```xml
<label xlink:type="resource" xlink:role="http://www.xbrl.org/2003/role#label"
    xlink:label="ci_currentAssets_en"
    xml:lang="en">Current Assets</label>
```

5.2.2.2.1 The xml:lang attribute on label elements

All label resources MUST have an xml:lang attribute identifying the language used for the content of the label. The value of the xml:lang attribute MUST conform to [XML] rules. (See http://www.w3.org/TR/2000/REC-xml-20001006#sec-lang-tag for details).

5.2.2.2.2 The xlink:role attribute on label elements (optional)

Label resources MAY contain an xlink:role attribute, which SHOULD distinguish between label resources by the nature of the XBRL concept documentation that they provide. Table 8 specifies all standard xlink:role attribute values and their meanings for label resources.

<table>
<thead>
<tr>
<th>label resource xlink:role attribute value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Omitted role attribute)</td>
<td>Standard label for a concept.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#terseLabel</td>
<td>Short label for a concept, often omitting text that should be inferable when the concept is reported in the context of other related concepts.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#verboseLabel</td>
<td>Extended label for a concept, making sure not to omit text that is required to enable the label to be understood on a stand alone basis.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#positiveLabel</td>
<td>Label for a concept, when the value being presented is positive (negative, zero). For example, the standard and standard positive labels might be “profit after tax” and the standard negative labels “loss after tax”, the terse label and terse positive labels might both be “profit”, while the negative terse label might be “loss”.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#positiveTerseLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#positiveVerboseLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#negativeLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#negativeTerseLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#negativeVerboseLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#zeroLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#zeroTerseLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#zeroVerboseLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#totalLabel</td>
<td>The label for a concept for use in presenting values associated with the concept when it is being reported as the total of a set of other values.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#periodStartLabel</td>
<td>The label for a concept with periodType="instant" for use in presenting values associated with the concept when it is being reported as a start (end) of period value.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#periodEndLabel</td>
<td></td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#documentation</td>
<td>Documentation of a concept, providing an explanation of its meaning and its appropriate usage and any other documentation deemed necessary.</td>
</tr>
<tr>
<td>label</td>
<td>resource</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#definitionGuidance</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#disclosureGuidance</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#presentationGuidance</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#placementGuidance</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#measurementGuidance</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#commentaryGuidance</td>
</tr>
<tr>
<td></td>
<td>http://www.xbrl.org/2003/role#exampleGuidance</td>
</tr>
</tbody>
</table>
Example 39. Arc between a concept and one of its labels

```xml
<label
  xlink:type="resource"
  xlink:label="A"
  xlink:role="http://www.xbrl.org/2003/role#label"
  xml:lang="en">Current Assets</label>
<loc
  xlink:type="locator"
  xlink:href="us_bs_v2.xsd#assets.currentAsset"
  xlink:label="B"/>
<labelArc
  xlink:type="arc"
  xlink:from="B"
  xlink:to="A"
  xlink:arcrole="http://www.xbrl.org/2003/role#concept-label"/>
```

Meaning: The label resource contains the text of the label and the arc element associates the concept with the label.

5.2.2.3 The labelArc element

The labelArc element is an XLink arc. Its generic syntax is defined in Section 3.5.3.8. In labelLink elements, it connects concepts with label resources.

The XML Schema constraints on the labelArc element are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
  xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:link="http://www.xbrl.org/2003/linkbase"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  xmlns:xl="http://www.xbrl.org/2001/XLink"
  elementFormDefault="qualified">
  <element name="labelArc" type="xl:arcType" substitutionGroup="xl:arc">
    <annotation>
      <documentation>
        Concrete arc for use in label extended links.
      </documentation>
    </annotation>
  </element>
</schema>
```

One standard arc role value is defined for labelArc elements. Its value is:

http://www.xbrl.org/2003/role#concept-label

This arc role value is for use on a labelArc from a concept locator (loc element) to a label element and it indicates that the label conveys human-readable information about the concept.

labelArc elements cannot describe cyclic relationships between concepts because they only relate concepts to label resources, not other concepts. For this reason, no restrictions on cyclic labelArc networks need be prescribed.

5.2.3 The referenceLink element

The referenceLink element is an extended link. Its generic syntax is documented in Section 3.5.3. It is intended to contain relationships between concepts and references to authoritative statements in the published business, financial and accounting literature that give meaning to the concepts.

The XML Schema constraints on the referenceLink element are shown below.
Example 40. Sample values of xlink:role for several referenceLink elements

http://www.my.org/role#balanceSheet
http://www.my.org/role#incomeStatement
http://www.my.org/role#statementOfComprehensiveIncome
http://www.my.org/role#statementOfStockholdersEquity
http://www.my.org/role#cashFlows

Meaning: The taxonomy has given a "role" to each referenceLink extended link to partition the extended links in an accounting-related taxonomy based on which part of a financial statement they relate to.

5.2.3.1 Locators in referenceLink elements

referenceLink elements MUST NOT contain locators that are not loc elements. loc elements are documented in detail in Section 3.5.3.6. The loc element, when used in a referenceLink, MUST only point to concepts in taxonomy schemas.

5.2.3.2 The reference element

The reference element enables XBRL taxonomies to ground the definitions of concepts in authoritative statements in the published business, financial and accounting literature. The reference element SHOULD only provide information necessary to find the reference materials that are relevant to understanding appropriate usage of the concept being defined. They MUST NOT contain the content of those reference materials themselves. Where textual documentation is required to complete the definition of an XBRL context, this MUST be contained in XBRL label elements as documented in Section 5.2.2.2.

The reference element is an XLink resource. Its generic syntax is documented in Section 3.5.3.7. The reference element MUST appear inside a referenceLink element.

The XML Schema constraints on the reference element are shown below.
Reference elements are composed of parts. Since the division of references into parts varies in every jurisdiction, part is an abstract element defined in this specification. Taxonomies MAY define elements that substitute for part, allowing them to be included inside reference elements.

Example 41. Arc between a concept and supporting references

```xml
<linkbase xmlns="http://www.xbrl.org/2003/linkbase"
xmlns:ref="http://www.xbrl.org/2003/ref"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <referenceLink xlink:type="extended">
    <!-- locator for element -->
    <loc xlink:type="locator"
      xlink:href="samp001.xsd#s_customerSales"
      xlink:label="s_customerSales"/>
    <!-- arcs -->
    <referenceArc xlink:type="arc" xlink:from="s_customerName" xlink:to="s_customerName_REF"
    <!-- references all with the same xlink:label -->
    <reference xlink:type="resource"
      xlink:label="s_salesBycustomer_REF"
      xlink:role="http://www.xbrl.org/2003/role#definitionGuidance">
      <ref:name>Handbook of Business Reporting</ref:name>
      <ref:pages>5</ref:pages>
    </reference>
    <reference xlink:type="resource"
      xlink:label="s_salesBycustomer_REF"
      xlink:role="http://www.xbrl.org/2003/role#definitionGuidance">
      <ref:name>Handbook of Business Reporting</ref:name>
      <ref:pages>5</ref:pages>
    </reference>
    <!-- more references -->
  </referenceLink>
</linkbase>
```
Meaning: The reference elements contain two literature citations, with different xlink:role attributes to distinguish them. The arc relates the concept to both references. The elements name and pages are defined as members of the part substitution group in the taxonomy referred to by the ref: namespace prefix, as shown below:

```
<schema targetNamespace="http://www.xbrl.org/2003/ref"
       xmlns:ref="http://www.xbrl.org/2003/ref"
       xmlns:xlink="http://www.w3.org/1999/xlink"
       xmlns:link="http://www.xbrl.org/2003/linkbase"
       xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
  <import namespace="http://www.xbrl.org/2003/linkbase"
          schemaLocation="xbrl-linkbase.xsd"/>
  <element name="name" type="string" substitutionGroup="link:part"/>
  <element name="number" type="string" substitutionGroup="link:part"/>
  <element name="paragraph" type="string" substitutionGroup="link:part"/>
  <element name="subparagraph" type="string" substitutionGroup="link:part"/>
  <element name="clause" type="string" substitutionGroup="link:part"/>
  <element name="pages" type="string" substitutionGroup="link:part"/>
</schema>
```

Example 42. Reference resource

```
<reference xlink:type="resource" xlink:label="ci_propertyPlantAndEquipmentNet_APB">
  <ci:name>ABP</ci:name>
  <ci:page>42</ci:page>
</reference>
```

5.2.3.2.1 The xlink:role attribute on reference elements (optional)

Reference elements MAY contain an optional xlink:role attribute, which MUST distinguish between reference elements by the nature of the XBRL concept documentation that they make external reference to. Table 9 specifies the standard xlink:role attribute values and their meanings for reference resources. These parallel the standard xlink:role attribute values for label resources.

<table>
<thead>
<tr>
<th>reference resource xlink:role attribute value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Omitted role attribute)</td>
<td>Standard reference for a concept</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#definitionRef</td>
<td>Reference to documentation that details a precise definition of the concept.</td>
</tr>
<tr>
<td>http://www.xbrl.org/2003/role#disclosureRef</td>
<td>Reference to documentation that details an explanation of the disclosure requirements relating to the concept. Specified categories include:</td>
</tr>
<tr>
<td></td>
<td>• mandatory</td>
</tr>
<tr>
<td></td>
<td>• recommended</td>
</tr>
</tbody>
</table>
5.2.3.3 The referenceArc element

The `referenceArc` element is an XLink arc. Its generic syntax is defined in Section 3.5.3.8. In `referenceLink` elements, it connects concepts with `reference` resources.

The XML Schema constraints on the `referenceArc` element are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
    xmlns="http://www.w3.org/2001/XMLSchema"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xmlns:xl="http://www.xbrl.org/2001/XLink"
    elementFormDefault="qualified">

  <element name="referenceArc" type="xl:arcType" substitutionGroup="xl:arc">
    <annotation>
      <documentation>
        Concrete arc for use in reference extended links.
      </documentation>
    </annotation>
  </element>

</schema>
```
One standard arc role value is defined for referenceArc elements. Its value is:

http://www.xbrl.org/2003/role#concept-reference

This arc role value is for use on a referenceArc from a concept locator (loc element) to a reference resource and it indicates that the reference is to materials documenting the meaning of the concept.

referenceArc elements cannot describe cyclic relationships between concepts because they only relate concepts to reference resources, not to other concepts. For this reason, no restrictions on cyclic referenceArc networks need be prescribed.

5.2.4 The presentationLink element

The presentationLink element is an extended link. Its generic syntax is documented in Section 3.5.3. It is intended to describe presentational relationships between concepts in taxonomies. The presentationLink element MUST NOT contain XLink resources.

The XML Schema constraints on the presentationLink element are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 elementFormDefault="qualified">

  <element name="presentationLink" substitutionGroup="xl:extended">
    <annotation>
      <documentation>
        presentation extended link element definition.
      </documentation>
    </annotation>
    <complexType>
      <complexContent>
        <restriction base="xl:extendedType">
          <choice minOccurs="0" maxOccurs="unbounded">
            <element ref="xl:title" />
            <element ref="link:documentation" />
            <element ref="link:loc" />
            <element ref="link:presentationArc" />
          </choice>
        </restriction>
      </complexContent>
    </complexType>
  </element>

</schema>
```

5.2.4.1 Locators in presentationLink elements

presentationLink elements MUST NOT contain locators that are not loc elements. loc elements are documented in detail in Section 3.5.3.6. The loc element, when used in a presentationLink, MUST only point to concepts in taxonomy schemas.

5.2.4.2 The presentationArc element

The presentationArc element is an XLink arc. Its generic syntax is defined in Section 3.5.3.8. The presentationArc element defines how concepts relate to one another for presentation.

The XML Schema constraints on the syntax for presentationArc elements are shown below.
Example 43. A presentation arc

```
<presentationArc xlink:type="arc"
  xlink:from="ci_currentAssets"
  xlink:to="ci_prepaidExpenses"
  xlink:arcrole="http://www.xbrl.org/2003/role#parent-child"
  order="4"/>
```

Meaning: Current assets must be presented as the parent of prepaid expenses. The prepaid expense element appears after any children of current assets whose order is less than 4, and appears before any children of current assets whose order is more than 4.

A taxonomy author MAY choose to define abstract elements (Table 1) and create links to and from them, to allow taxonomy presentation applications to present concepts that are related in groups even when they are not part of a calculation, or other grouping.

Example 44. An abstract concept definition

```
<element name="balanceSheet" id="ci_balanceSheet" abstract="true"/>
```

Meaning: The balanceSheet element exists in the taxonomy only to organise other elements; it MUST NOT appear in an XBRL instance. It has no declared type or other attributes.

One standard arc role value is defined for presentationArc elements. Its value is:

```
http://www.xbrl.org/2003/role#parent-child
```

Such relationships are referred to as "parent-child" arcs. Parent-child arcs go from a parent concept to a child concept and indicate that, in a hierarchical view of XBRL information, it is appropriate to show the child concept as a child of the parent concept. Parent-child arcs MUST only relate concepts that are in the item or tuple substitution groups.

Because a network of parent-child arcs describes a hierarchy of concepts, it makes no sense for such a network to document that a concept is its own descendant. For this reason, directed
cycles are not allowed in networks of parent-child arcs. Fully conformant XBRL processors MUST detect and signal undirected cycles in networks of parent-child relationships.

5.2.4.2.1 The preferredLabel attribute

The preferredLabel attribute is a URI that MAY be supplied on a parent-child arc to indicate the most appropriate kind of label to use when presenting the arc’s child concept. If supplied, the value of the preferredLabel attribute MUST be equal to an xlink:role attribute value on a label resource (in a labelLink extended link) that is the target of a concept-label arc from the presentationArc element’s child concept.

XBRL processors MAY use the value of the preferredLabel attribute to choose between different labels that have been associated with the one concept. This can be particularly useful when a given concept is used in a variety of ways within a DTS. For example, cash can be used in the balance sheet and as the starting and ending balances in a cash flow statement. Each appearance of the concept in a set of presentation links MAY use this feature to indicate a different preferred label.

5.2.5 The calculationLink element

The calculationLink element is an extended link. Its generic syntax is documented in Section 3.5.3. It describes additive calculation relationships between concepts in taxonomies. The calculationLink element MUST NOT contain XLink resources.

The XML Schema constraints on the calculationLink element are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xl="http://www.xbrl.org/2001/XLink"
elementFormDefault="qualified">
  <element name="calculationLink">
    <annotation>
      <documentation>
        calculation extended link element definition
      </documentation>
    </annotation>
    <complexType>
      <complexContent>
        <restriction base="xl:extendedType">
          <choice minOccurs="0" maxOccurs="unbounded">
            <element ref="xl:title" />
            <element ref="link:documentation" />
            <element ref="link:loc" />
            <element ref="link:calculationArc" />
          </choice>
        </restriction>
      </complexContent>
    </complexType>
  </element>
</schema>
```

5.2.5.1 Locators in calculationLink elements

calculationLink elements MUST NOT contain locators that are not loc elements. loc elements are documented in detail in Section 3.5.3.6. The loc element, when used in a calculationLink, MUST only point to concepts in taxonomy schemas.
5.2.5.2 The calculationArc element

The calculationArc element is an XLink arc. Its generic syntax is defined in Section 3.5.3.8. The calculationArc element defines how concepts relate to one another for calculation purposes.

The XML Schema constraints on the syntax for calculationArc elements are shown below.

```
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
  xmlns="http://www.w3.org/2001/XMLSchema"
  xmlns:link="http://www.xbrl.org/2003/linkbase"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  xmlns:xl=http://www.xbrl.org/2001/XLink
  elementFormDefault="qualified">
  <element name="calculationArc" substitutionGroup="xl:arc">
    <complexType>
      <annotation>
        <documentation>
          Extension of the extended link arc type for calculation arcs.
          Adds a weight attribute to track weights on contributions to summations.
        </documentation>
      </annotation>
      <complexContent>
        <extension base="xl:arcType">
          <attribute name="weight" type="decimal" use="required" />
        </extension>
      </complexContent>
    </complexType>
  </element>
</schema>
```

One standard arc role value is defined for calculationArc elements. Its value is:

```
http://www.xbrl.org/2003/role#summation-item
```

Such relationships are referred to as "summation-item" arcs. Summation-item arcs MUST only associate concepts that are in the item substitution group. They document aggregation relationships between concepts. They connect from one concept, referred to as the summation concept, to another concept, referred to as the contributing concept.

A complete summation-item arc set for a given summation concept is defined in the context of the DTS supporting an XBRL instance. It is the set of all summation-item arcs, defined in calculationLink extended links with the same xlink:role attribute value that associate contributing concepts to the given summation concept.

A summation item is an occurrence of a summation concept in an XBRL instance. A contributing item is an occurrence of a contributing concept in an XBRL instance.

A calculation binds for a summation item if there is exactly one contributing item in its scope (see calculation "scoping" below), with a context and unit that is s-equal to the context and unit of the summation item, for each calculationArc in the complete calculationArc set defined for the summation item. Items with nil values do not participate in calculation bindings.

A binding calculation is defined to be consistent if the value of its summation item is equal to the sum of the values of the contributing items in the binding, each multiplied by the value of the weight attribute on its associated calculationArc element.

An XBRL instance is consistent with the semantics of the calculation linkbases in its supporting DTS if all binding calculations for the XBRL instance are consistent.
Fully conformant XBRL processors MUST detect and signal inconsistencies, as defined above, between an XBRL instance and the summation-item arcs of calculation linkbases in its supporting DTS.

No cycles are allowed in networks of summation-item arcs. Fully conformant XBRL processors MUST detect any cycles in networks of summation-item arcs.

Example 45. Syntax of a calculationArc

```
<calculationArc
  xlink:type="arc"
  xlink:arcrole="http://www.xbrl.org/2003/role#summation-item"
  xlink:from="currentAssets"
  xlink:to="prepaidExpenses"
  weight="1.0"
  order="1"/>
```

A taxonomy might include a single concept viewed from different perspectives or as having several different dimensions. In the example below, the cash concept can be broken down by branch location, by account type, and by availability.

Example 46. Cash, equivalent to cash as totalled by branch location and account type

```
Cash
  ▪ Cash by Branch Location
    ▪ Cash in Domestic Branches
    ▪ Cash in Foreign Branches
  ▪ Cash by Account Type
    ▪ Cash in Interest Bearing Accounts
    ▪ Cash in Non-interest Bearing Accounts
  ▪ Cash by Availability
    ▪ Cash on Hand
    ▪ Cash as Balances Due
```

Cash in domestic branches and cash in foreign branches adds to cash. Cash in interest bearing accounts and cash in non-interest bearing accounts also adds to cash. Cash on hand and cash as balances due also adds to cash. To ensure that the calculation relationships between all of these disaggregate cash concepts and the cash concept itself do not cause double or triple counting, the three pairs of summation-item arcs would be grouped into extended links with different extended link role values.

Thus, the summation-item arcs from cash to cash in domestic branches and to cash in foreign branches could be defined in extended links with the extended link role value:

```
http://www.mytaxonomy.com/calcLinks/cashByBranchLocation
```

Likewise, the summation-item arcs from cash to cash in interest bearing accounts and cash in non-interest bearing accounts could be defined in extended links with the extended link role value:

```
http://www.mytaxonomy.com/calcLinks/cashByAccountType
```

Finally, the summation-item arcs from cash to cash on hand and cash as balances due could be defined in extended links with the extended link role value:

```
http://www.mytaxonomy.com/calcLinks/cashByAvailability
```

The different extended link role values avoid double or triple counting in this example by ensuring that the pairs of summation-item arcs are not all processed together.

5.2.5.2.1 The weight attribute

The weight attribute MUST appear on calculationArc elements. The weight attribute MUST have a non-zero decimal value. For summation-item arcs, the weight attribute indicates the multiplier to be applied to an item value when accumulating numeric values from item elements to summation elements. A value of “1.0” means that 1.0 times the numeric value of
the item is applied to the parent item. A weight of "-1.0" means that 1.0 times the numeric value is subtracted from the summation item.

5.2.5.2.2 Calculation scoping

A summation-item calculationArc applies when the taxonomy concepts that are located by the "from" and "to" attributes of a summation-item calculation arc identify c-equal and u-equal items (i.e. they are within equivalent contexts and units in an XBRL instance). However, calculations also take into account tuple structure in the XBRL instance. The "from" item element MUST be a child of the least common ancestor of both the "from" and "to" item elements for the calculation relationships to bind. A consequence of this scoping is that items inside duplicate tuples cannot participate in calculations.

Example 47. XBRL instance fragment with nested tuples

There are three calculation arcs in the calculationLink:
from (item) gross to (summation) net, weight = 1.0
from (item) returns to (summation) net, weight = -1.0
from (item) gross to (summation) totalGross, weight = 1.0

The following is a fragment of an XBRL instance. Note that all numeric items share a single context c1.

```
<analysis>
  <customer>
    <name contextRef="c1">Acme</name>
    <gross contextRef="c1">3000</gross>
    <returns contextRef="c1">100</returns>
    <net contextRef="c1">2900</net>
  </customer>
  <customer>
    <name contextRef="c1">Bree</name>
    <gross contextRef="c1">2000</gross>
    <returns contextRef="c1">200</returns>
    <net contextRef="c1">1800</net>
  </customer>
  <totalGross contextRef="c1">5000</totalGross>
</analysis>
```

<table>
<thead>
<tr>
<th>calculation item ("from") path</th>
<th>calculation summation ("to") path</th>
<th>Match?</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>analysis/customer[1]/gross</td>
<td>analysis/customer[1]/net</td>
<td>Yes.</td>
<td>They are siblings.</td>
</tr>
<tr>
<td>analysis/customer[2]/gross</td>
<td>analysis/customer[2]/net</td>
<td>Yes.</td>
<td>They are siblings.</td>
</tr>
<tr>
<td>analysis/customer[1]/returns</td>
<td>analysis/customer[1]/net</td>
<td>Yes.</td>
<td>They are siblings.</td>
</tr>
<tr>
<td>analysis/customer[2]/gross</td>
<td>analysis/customer[2]/net</td>
<td>Yes.</td>
<td>They are siblings.</td>
</tr>
<tr>
<td>analysis/customer[1]/gross</td>
<td>analysis/customer[2]/net</td>
<td>No.</td>
<td>The “to” summation is not a sibling or uncle of the item.</td>
</tr>
<tr>
<td>analysis/customer[2]/gross</td>
<td>analysis/customer[1]/net</td>
<td>No.</td>
<td>The “to” summation is not a sibling or uncle of the item.</td>
</tr>
<tr>
<td>calculation item ("from") path</td>
<td>calculation summation ("to") path</td>
<td>Match</td>
<td>Reason</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>analysis/customer[1]/gross</td>
<td>analysis/totalGross</td>
<td>Yes.</td>
<td>totalGross is an uncle of the item under ancestor analysis.</td>
</tr>
<tr>
<td>analysis/customer[2]/gross</td>
<td>analysis/totalGross</td>
<td>Yes.</td>
<td>totalGross is an uncle of the item under ancestor analysis.</td>
</tr>
</tbody>
</table>

Taxonomy authors MUST use XML Schema element definitions to describe the relationship of elements within tuples, and tuples within tuples, in such a way that calculation arcs among the elements will compute totals and other results within an appropriate scope.

5.2.6 The definitionLink element

The definitionLink element is an extended link. Its generic syntax is documented in Section 3.5.3. It is intended to describe a variety of miscellaneous relationships between concepts in taxonomies. The definitionLink element MUST NOT contain XLink resources.

The XML Schema constraints on the definitionLink element are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:link="http://www.xbrl.org/2003/linkbase"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xl="http://www.xbrl.org/2001/XLink"
elementFormDefault="qualified">
  <element name="definitionLink">
    <annotation>
      <documentation>
        definition extended link element definition
      </documentation>
    </annotation>
    <complexType>
      <complexContent>
        <restriction base="xl:extendedType">
          <choice minOccurs="0" maxOccurs="unbounded">
            <element ref="xl:title" />
            <element ref="link:documentation" />
            <element ref="link:loc" />
            <element ref="link:definitionArc" />
          </choice>
        </restriction>
      </complexContent>
    </complexType>
  </element>
</schema>
```

5.2.6.1 Locators in calculationLink elements

definitionLink elements MUST NOT contain locators that are not loc elements. loc elements are documented in detail in Section 3.5.3.6. The loc element, when used in a definitionLink, MUST only point to concepts in taxonomy schemas.
5.2.6.2 The definitionArc element

The definitionArc element is an XLink arc. Its generic syntax is defined in Section 3.5.3.8. The definitionArc elements define various kinds of relationships between concepts.

The XML Schema constraints on the syntax for definitionArc elements are shown below.

```xml
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
   xmlns="http://www.w3.org/2001/XMLSchema"
   xmlns:link="http://www.xbrl.org/2003/linkbase"
   xmlns:xlink="http://www.w3.org/1999/xlink"
   xmlns:xl=http://www.xbrl.org/2001/XLink
   elementFormDefault="qualified">

   <element name="definitionArc" type="xl:arcType" substitutionGroup="xl:arc">
     <annotation>
       <documentation>
         Concrete arc for use in definition extended links.
       </documentation>
     </annotation>
   </element>

</schema>
```

Four standard arc role values are defined for definitionArc elements. The first standard value is:

http://www.xbrl.org/2003/role#general-special

Such relationships are referred to as "general-special" relationships. General-special arcs MUST only associate source and target concepts that are in the item substitution group.

General-special arcs connect from a generalisation concept locator to a specialisation concept locator. A generalisation item is an occurrence of a generalisation concept in an XBRL instance. A specialisation item is an occurrence of a specialisation concept in an XBRL instance. A valid value for a specialisation item is a valid value of its generalisation item (if both items are c-equal and u-equal). However, a valid value for a generalisation item is not necessarily a valid value for its specialisation item, even if they are c-equal and s-equal.

Only undirected cycles are allowed in networks of general-special arcs. Fully conformant XBRL processors MUST detect and signal directed cycles in networks of general-special arcs.

Example 48. A general-special arc

```xml
<definitionArc
   xlink:type="arc"
   xlink:from="postalCode"
   xlink:to="zipCode"
   xlink:arcrole="http://www.xbrl.org/2003/role#general-special"
   order="1"/>
```

Meaning: postalCode is a generalisation of zipCode. The order attribute indicates that when this link is displayed to a user, it appears after links with order less than 1, and before links with order greater than 1.

The second standard arc role value for definitionArc elements is:

http://www.xbrl.org/2003/role#essence-alias

Such relationships are referred to as "essence-alias" arcs. definitionArc elements with this arc role value MUST only associate concepts that are in the item substitution group.

This arc role value is for use on a definitionArc from an essence concept locator to an alias concept locator.

An essence item is an occurrence of an essence concept in an XBRL instance. An alias item is an occurrence of an alias concept in an XBRL instance. If the values of associated essence and
alias items, with s-equal contexts and units, are not equal, then those items are not consistent with the semantics of the definition extended links that have associated them.

Only undirected cycles are allowed in networks of essence-alias arcs. Fully conformant XBRL processors MUST detect any directed cycles in networks of essence-alias arcs.

It is often the case that particular concepts have been defined more than once in a single taxonomy or in a set of taxonomies. It is appropriate, in such cases, for taxonomy authors to have a single “canonical best element” or “essence” for one of the concepts and to associate it with the other “alias” concepts using the essence-alias definition arc to indicate to XBRL validating processors and other XBRL instance consuming applications that the items MUST be consistent within a given context.

A definitionArc element where the xlink:arcrole is http://www.xbrl.org/2003/role#essence-alias denotes a relationship between two concepts, from the essence (basic, primary) concept, to the other alias (alternative name) concept.

For definitions of “alias concept” “alias item” “essence concept” and “essence item” refer to Table 1. For any set of essence-alias arcs that have the same essence concept the term “alias concept set” means the set of alias concepts associated with the set of arcs and the term “alias item set” means a corresponding set of items in an s-equal context in an XBRL instance. The following conditions apply to definition arcs (that are not prohibited (See Section 3.5.3.8.5 for details on prohibited arcs) in any extension taxonomy) having one of these two arc roles, to the alias concepts and essence concepts of such arcs, and to their corresponding alias items and essence items.

1. An alias concept MAY be the essence concept of any number of other alias concepts.
2. Both the alias concept and essence concept of an arc MUST have the same item type.
3. If an alias item and an essence item in an XBRL instance that are c-equal are not v-equal in those respective s-equal contexts and units, then the two items are not consistent with the semantics of the definition links in the DTS supporting the XBRL instance. This requirement only applies if both items do not have nil values. Only fully conformant XBRL processors MUST detect such inconsistencies.
4. For any non-numeric essence concept E, for which the value is not supplied for an XBRL instance context C, an XBRL processor MAY infer a value for E that is v-equal to the values of all of the (non nil valued) members of the alias item set S corresponding to all essence-alias arcs with E as their essence concept. If all (non nil valued) members of S are not v-equal, then the XBRL instance is not consistent with the definition link semantics expressed in its DTS and fully conformant XBRL processors MUST detect and signal such inconsistencies. If an application applies this rule and any member M of S does not have a value supplied or has a nil value, but is an essence item in some set of essence-alias arcs, this rule MUST be applied recursively to infer the value of M before inferring the value of E.

XBRL processors are not required to infer the values of alias items from the values of essence items.

Example 49. Inference of values for non-numeric items with concepts connected by essence-alias arcs

In an XBRL instance there is a context c_1. The concepts D and E are string item types connected by an essence-alias definitionArc, with E being the essence concept and D being the alias concept. E has the value "Bert" in context c_1 while D has the value "Ernie" in context c_1. These values are inconsistent with the definitionArc semantics that have been expressed.

5. For any numeric essence concept E, for which the value is not supplied for an XBRL instance context C, an XBRL processor MAY infer a value for E that is v-equal to the values of all of the members of the (non nil valued) alias item set S corresponding to all essence-alias arcs with E as their essence concept, at the greatest values of precision and decimals for which this is possible (see 4.4.1 above). If all (non nil valued) members of S
are not v-equal, then the XBRL instance is not consistent with the definition link semantics expressed in its DTS and fully conformant XBRL processors MUST detect such inconsistencies. If an application applies this rule and any member \(M\) of \(S\) does not have a value supplied or has a nil value, but is an essence item in some set of essence-alias arcs, this rule MUST be applied recursively to infer the value of \(M\) before inferring the value of \(E\).

Example 50. Inference of values for numeric items with concepts connected by essence-alias arcs

<table>
<thead>
<tr>
<th>Case 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The concepts A, B and C are connected by essence-alias arcs, with A being the essence and B and C being aliases. In an XBRL instance, B has the value 110 with precision=2 and C has the value 99 with precision=2. A, B and C are c-equal.</td>
</tr>
<tr>
<td>The values of B and C are inconsistent at their specified precision of 2. As a result, no inference can be made for A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The concepts A, B and C are connected by essence-alias arcs, with A being the essence and B and C being aliases. In an XBRL instance, B has the value 110 with precision=1 and C has the value 99 with precision=1. A, B and C are c-equal.</td>
</tr>
</tbody>
</table>
| Rounding B to precision=1 gives the result 100
Rounding C to precision=1 gives the result 100
Since these two values are the same, a value of 100 at precision=1 can be inferred for A. |

The third standard arc role value for \(\text{definitionArc}\) elements is:

http://www.xbrl.org/2003/role#similar-tuples

Such relationships are referred to as "similar-tuples" arcs. Both the source and target concepts of similar-tuples arcs MUST be in the tuple substitution group. The similar-tuples arcs associate tuple concepts that have equivalent definitions (as provided in the labels and references for those tuples) even when they have different XML content models.

For example, this kind of relationship would be appropriate to use between two different tuple concepts that are both designed to describe mailing addresses.

The semantics of similar-tuples arcs are symmetric. It does not matter which tuple the arc goes from and which tuple the arc goes to.

Any cycles can be semantically sensible in networks of \(\text{definitionArc}\) elements with the http://www.xbrl.org/2003/role#similar-tuples arc role value because the relationship between concepts being described by these relationships is symmetric.

The fourth standard arc role value for \(\text{definitionArc}\) elements is:

http://www.xbrl.org/2003/role#requires-element

Such relationships are referred to as "requires-element" arcs. \(\text{definitionArc}\) elements with this arc role value MAY associate concepts that are in the tuple or item substitution groups.

If an instance of the concept at the source of the arc occurs in an XBRL instance then a c-equal instance of the arc’s target concept MUST also occur in the XBRL instance. Fully conformant XBRL processors MUST detect and signal instances in which this relationship is violated.

For example, the data that is normally entered into a paper form could be represented electronically using XBRL instances. To represent the “required field” idea, the taxonomy author can create a \(\text{definitionArc}\) with the http://www.xbrl.org/2003/role#requires-element arc role value. This arc would link the concepts representing the required fields and an element representing the concept of the form itself.
Cycles are allowed in networks of requires-element arcs. The source and target concepts for requires-element arcs MUST be in the tuple or item substitution groups.

6 References

[IEEE] IEEE
IEEE Standard for Binary Floating Point Arithmetic

http://www.iso.ch/

[RFC2119] Scott Radner
RFC2119
http://www.ietf.org/rfc/rfc2119.txt

XML Schema Part 0: Primer.
http://www.w3.org/TR/xmlschema-0/

http://www.w3.org/TR/xmlschema-1/

http://www.w3.org/TR/xmlschema-2/

[SGML] International Standards Organisation
Information Processing – Text and office systems – Standard Generalized Markup Language (SGML)

[URI] Tim Berners-Lee, Roy Fielding, and Larry Masinter
http://www.ietf.org/rfc/rfc2396.txt

[XBRL] David vun Kannon and Luther Hampton, editors
Extensible Business Reporting Language (XBRL) 2.0 Specification.

[XHTML] Murray Altheim et al.
Modularization of HTML
http://www.w3.org/TR/xhtml-modularization/

[XML] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen
Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/rec-xml

[XML Base] Jonathan Marsh
XML Base.
http://www.w3.org/TR/xmlbase/
[XLINK] Steve DeRose, Eve Maler, David Orchard
XML Linking Language (XLink) Version 1.0.
http://www.w3.org/TR/xlink/

[XPATH] James Clark and Steve DeRose
XML Path Language (XPath) 1.0 Specification
http://www.w3.org/TR/xpath/

[XPTR] Paul Grasso, Eve Maler, Jonathan Marsh, and Norman Walsh, editors
XML Pointer Language (XPointer Framework) V1.0.
http://www.w3.org/TR/xptr-framework/
A. Schemas

The following are the versions of the XML schemas provided as part of this specification. These are all normative except for iso4217.xsd for which no normative version is supplied (See Section 4.6.2). Non-normative versions (which should be identical to these except for comments indicating their non-normative status) are also provided as separate files for convenience of users of the specification.

In order to allow validation of linkbase documents, the XBRL linkbase namespace (http://www.xbrl.org/2003/linkbase) MUST be used with other schemas that implement the XLink specification and provide certain attributes in the XML namespace. These are provided with XBRL schemas and sample files. These schemas that implement the XLink specification and define the namespaces http://www.w3.org/1999/xlink and http://www.w3.org/XML/1998/namespace are not official documents of the W3C. It is the intention of XBRL International to integrate with the official schemas for XLink should they become available.

The schema for namespace http://www.xbrl.org/2003/role contains all the arc roles defined in XBRL itself and MAY be used by processors that do not have these definitions built in.

xbrl-instance-2003-07-31.xsd (normative)

```xml
<?xml version="1.0" ?>
<!-- (c) XBRL International. See www.xbrl.org/legal -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
    xmlns:xbrli="http://www.xbrl.org/2003/instance"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    targetNamespace="http://www.xbrl.org/2003/instance"
    elementFormDefault="qualified">
  <annotation>
    <documentation>
      Taxonomy schema for XBRL. This schema defines syntax relating to XBRL instance documents.
    </documentation>
  </annotation>
  <import namespace="http://www.xbrl.org/2003/linkbase"
      schemaLocation="xbrl-linkbase-2003-07-31.xsd" />
  <import namespace="http://www.w3.org/XML/1998/namespace"
      schemaLocation="xml-2001-03.xsd" />
  <annotation>
    <documentation>
      Define the attributes to be used on XBRL concept definitions
    </documentation>
  </annotation>
  <attribute name="periodType">
    <annotation>
      <documentation>
        The periodType attribute (restricting the period for XBRL items)
      </documentation>
    </annotation>
    <simpleType>
      <restriction base="token">
        <enumeration value="instant" />
        <enumeration value="duration" />
      </restriction>
    </simpleType>
  </attribute>
  <attribute name="balance">
    <annotation>
      <documentation>
      </documentation>
    </annotation>
  </attribute>
</schema>
```
The balance attribute (imposes calculation relationship restrictions)
</documentation>
</annotation>
</simpleType>
<restriction base="token">
 <enumeration value="debit" />
 <enumeration value="credit" />
</restriction>
</simpleType>
</attribute>
<annotation>
</documentation>
Define the simple types used as a base for for item types
</documentation>
</annotation>
<simpleType name="monetary">
<annotation>
 <documentation>
 the monetary type serves as the datatype for those financial concepts in a taxonomy which denote units in a currency. Instance items with this type must have a unit of measure from the ISO 4217 namespace of currencies.
 </documentation>
 </annotation>
</simpleType>
<restriction base="decimal" />
</simpleType>
<simpleType name="shares">
<annotation>
 <documentation>
 This datatype serves as the datatype for share based financial concepts.
 </documentation>
 </annotation>
</simpleType>
<restriction base="decimal" />
</simpleType>
<simpleType name="pure">
<annotation>
 <documentation>
 This datatype serves as the type for dimensionless numbers such as percentage change, growth rates, and other ratios where the numerator and denominator have the same units.
 </documentation>
 </annotation>
 <restriction base="decimal" />
</simpleType>
<!-- nonZeroDecimal -->
<simpleType name="nonZeroDecimal">
<annotation>
 <documentation>
 As the name implies this is a decimal value that can not take the value 0 - it is used as the type for the denominator of a fractionItemType.
 </documentation>
 </annotation>
 <union>
 <restriction base="decimal">
 <minExclusive value="0" />
 </restriction>
 </simpleType>
 </union>
</simpleType>
<!-- nonZeroDecimal -->
<simpleType name="nonZeroNonInfiniteFloat">
<annotation>
<documentation>
As the name implies this is a decimal value that can not take
the value 0 - it is used as the type for the denominator of a
fractionItemType item
</documentation>
</annotation>
<union>
<simpleType>
<restriction base="decimal">
<minExclusive value="0" />
</restriction>
</simpleType>
<simpleType>
<restriction base="decimal">
<maxExclusive value="0" />
</restriction>
</simpleType>
</union>
</simpleType>

<simpleType name="precisionType">
<annotation>
<documentation>
This type is used to specify the value of the
precision attribute on numeric items. It consists
of the union of nonNegativeInteger and "INF" (used
to signify infinite precision or "exact value").
</documentation>
</annotation>
<union memberTypes="nonNegativeInteger ">
<simpleType>
<restriction base="string">
<enumeration value="INF" />
</restriction>
</simpleType>
</union>
</simpleType>

<simpleType name="decimalsType">
<annotation>
<documentation>
This type is used to specify the value of the decimals attribute
on numeric items. It consists of the union of integer and "INF"
(used to signify that a number is expressed to an infinite number
of decimal places or "exact value").
</documentation>
</annotation>
<union memberTypes="integer ">
<simpleType>
<restriction base="string">
<enumeration value="INF" />
</restriction>
</simpleType>
</union>
</simpleType>

<attributeGroup name="numericItemAttrs">
<annotation>
<documentation>
Group of attributes for numeric items
</documentation>
</annotation>
</attributeGroup>
<complexType name="decimalItemType" final="extension">
 <simpleContent>
 <extension base="decimal">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="floatItemType" final="extension">
 <simpleContent>
 <extension base="float">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="doubleItemType" final="extension">
 <simpleContent>
 <extension base="double">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="monetaryItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:monetary">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="sharesItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:shares">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="pureItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:pure">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="fractionItemType" final="extension">
 <sequence>
 <element name="numerator" type="decimal" />
 <element name="denominator" type="xbrli:nonZeroDecimal" />
 </sequence>
 <attribute name="contextRef" type="IDREF" use="required" />
 <attribute name="id" type="ID" use="optional" />
 <anyAttribute namespace="##other" processContents="lax" />
</complexType>

<annotation>
 <documentation>
 The following 13 numeric types are all based on the XML Schema
 built-in types that are derived by restriction from decimal.
 </documentation>
</annotation>

<complexType name="integerItemType" final="extension">
 <simpleContent>
 <extension base="integer">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="nonPositiveIntegerItemType" final="extension">
 <simpleContent>
 <extension base="nonPositiveInteger">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="negativeIntegerItemType" final="extension">
 <simpleContent>
 <extension base="negativeInteger">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="longItemType" final="extension">
 <simpleContent>
 <extension base="long">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<complexType name="intItemType" final="extension">
 <simpleContent>
 <extension base="int">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="shortItemType" final="extension">
 <simpleContent>
 <extension base="short">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="byteItemType" final="extension">
 <simpleContent>
 <extension base="byte">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="nonNegativeIntegerItemType" final="extension">
 <simpleContent>
 <extension base="nonNegativeInteger">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="unsignedLongItemType" final="extension">
 <simpleContent>
 <extension base="unsignedLong">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="unsignedIntItemType" final="extension">
 <simpleContent>
 <extension base="unsignedInt">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="unsignedShortItemType" final="extension">
 <simpleContent>
 <extension base="unsignedShort">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="unsignedByteItemType" final="extension">
 <simpleContent>
 <extension base="unsignedByte">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="positiveIntegerItemType" final="extension">
 <simpleContent>
 <extension base="positiveInteger">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="stringItemType" final="extension">
 <simpleContent>
 <extension base="string">
 <attributeGroup ref="xbrli:numericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>

<annotation>
 <documentation>
 The following 17 non-numeric types are all based on the primitive built-in data types of XML Schema.
 </documentation>
</annotation>
<simpleContent>
 <extension base="string">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
</simpleContent>
<complexType name="booleanItemType" final="extension">
 <simpleContent>
 <extension base="boolean">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="hexBinaryItemType" final="extension">
 <simpleContent>
 <extension base="hexBinary">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="base64BinaryItemType" final="extension">
 <simpleContent>
 <extension base="base64Binary">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="anyURIItemType" final="extension">
 <simpleContent>
 <extension base="anyURI">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="uriItemType" final="extension">
 <simpleContent>
 <extension base="anyURI">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="QNameItemType" final="extension">
 <simpleContent>
 <extension base="QName">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="durationItemType" final="extension">
 <simpleContent>
 <extension base="duration">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="dateTimeItemType" final="extension">
 <simpleContent>
 <extension base="xbrli:dateUnion">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="timeItemType" final="extension">
 <simpleContent>
 <extension base="time">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
The following 4 non-numeric types are all based on the XML Schema built-in types that are derived by restriction and/or list from string.
<extension base="token">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
</extension>
</simpleContent>
</complexType>
<complexType name="languageItemType" final="extension">
 <simpleContent>
 <extension base="language">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="NameItemType" final="extension">
 <simpleContent>
 <extension base="Name">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<complexType name="NCNameItemType" final="extension">
 <simpleContent>
 <extension base="NCName">
 <attributeGroup ref="xbrli:nonNumericItemAttrs" />
 </extension>
 </simpleContent>
</complexType>
<annotation>
 <documentation>
 XML Schema components contributing to the context element
 </documentation>
</annotation>
<element name="segment">
 <complexType>
 <sequence>
 <any namespace="##other" processContents="lax" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 </complexType>
</element>
<complexType name="contextEntityType">
 <annotation>
 <documentation>
 The type for the entity element, used to describe the reporting entity. Note that the scheme attribute is required and cannot be empty.
 </documentation>
 </annotation>
 <sequence>
 <element name="identifier">
 <complexType>
 <simpleContent>
 <extension base="token">
 <attribute name="scheme" use="required">
 <simpleType>
 <restriction base="anyURI">
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
</complexType>
<element ref="xbrli:segment" minOccurs="0" />
</sequence>
</complexType>
<complexType name="dateUnion">
 <annotation>
 <documentation>
The union of the date and dateTime simple types.
 </documentation>
 </annotation>
 <union memberTypes="date dateTime " />
</complexType>
<complexType name="contextPeriodType">
 <annotation>
 <documentation>
The type for the period element, used to describe the reporting date info.
 </documentation>
 </annotation>
 <choice>
 <sequence>
 <element name="startDate" type="xbrli:dateUnion" />
 <element name="endDate" type="xbrli:dateUnion" />
 </sequence>
 <element name="instant" type="xbrli:dateUnion" />
 <element name="forever">
 <complexType />
 </element>
 </choice>
</complexType>
<complexType name="contextScenarioType">
 <annotation>
 <documentation>
 Used for the scenario under which fact have been reported.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##other" processContents="lax" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
</complexType>
<element name="context">
 <annotation>
 <documentation>
 Used for an island of context to which facts can be related.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="entity" type="xbrli:contextEntityType" />
 <element name="period" type="xbrli:contextPeriodType" />
 <element name="scenario" type="xbrli:contextScenarioType" minOccurs="0" />
 </sequence>
 <attribute name="id" type="ID" use="required" />
 </complexType>
</element>
<annotation>
 <documentation>
 XML Schema components contributing to the unit element
 </documentation>
</annotation>
<element name="measure" type="QName" />
<complexType name="measuresType">
A collection of sibling measure elements
</documentation>
</element>
</sequence>
</complexType>
<element name="divide">
<annotation>
 <documentation>
 Element used to represent division in units
 </documentation>
</annotation>
<complexType>
 <sequence>
 <element name="unitNumerator" type="xbrli:measuresType" />
 <element name="unitDenominator" type="xbrli:measuresType" />
 </sequence>
</complexType>
</element>
<element name="unit">
<annotation>
 <documentation>
 Element used to represent units information about numeric items
 </documentation>
</annotation>
<complexType>
 <choice>
 <element ref="xbrli:measure" minOccurs="1" maxOccurs="unbounded" />
 <element ref="xbrli:divide" />
 </choice>
 <attribute name="id" type="ID" use="required" />
</complexType>
</element>
<annotation>
 <documentation>
 Elements to use for facts in instances
 </documentation>
</annotation>
<element name="item" type="anyType" abstract="true">
<annotation>
 <documentation>
 Abstract item element used as head of item substitution group
 </documentation>
</annotation>
</element>
<complexType name="tupleType" final="extension">
<annotation>
 <documentation>
 Tuple element type used for head of tuple substitution group
 </documentation>
</annotation>
<choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xbrli:item" maxOccurs="unbounded" />
 <element ref="xbrli:tuple" maxOccurs="unbounded" />
</choice>
<attribute name="id" type="ID" use="optional" />
<anyAttribute namespace="##other" processContents="lax" />
</complexType>
<element name="tuple" type="xbrli:tupleType" abstract="true">
<annotation>
 <documentation>
 Abstract tuple element used as head of tuple substitution group
 </documentation>
</annotation>
<element name="xbrl">
 <annotation>
 <documentation>
 XBRL instance root element.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="link:schemaRef" minOccurs="1" maxOccurs="unbounded" />
 <element ref="link:linkbaseRef" minOccurs="0" maxOccurs="unbounded" />
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xbrli:item"/>
 <element ref="xbrli:tuple"/>
 <element ref="xbrli:context"/>
 <element ref="xbrli:unit"/>
 <element ref="link:footnoteLink"/>
 </choice>
 </sequence>
 <attribute name="id" type="ID" use="optional" />
 <attribute ref="xml:base" use="optional" />
 <anyAttribute namespace="##other" processContents="lax" />
 </complexType>
</element>
</schema>

xbrl-linkbase-2003-07-31.xsd (normative)

<?xml version="1.0" ?>
<!- (c) XBRL International. See www.xbrl.org/legal -->
<schema targetNamespace="http://www.xbrl.org/2003/linkbase"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:link="http://www.xbrl.org/2003/linkbase"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xl="http://www.xbrl.org/2001/XLink"
 elementFormDefault="qualified">
 <annotation>
 <documentation>
 XBRL simple and extended link schema constructs
 </documentation>
 </annotation>
 <import namespace="http://www.xbrl.org/2001/XLink"
 schemaLocation="xl.xsd" />
 <import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="xlink.xsd"/>
 <import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="xml-2001-03.xsd" />
 <element name="documentation" substitutionGroup="xl:documentation">
 <annotation>
 <documentation>
 Concrete element to use for documentation of extended links and linkbases.
 </documentation>
 </annotation>
 <complexType>
<complexContent>
 <restriction base="xl:documentationType">
 <attribute ref="xml:lang" use="required" />
 <anyAttribute namespace="##other" processContents="lax" />
 </restriction>
</complexContent>
</complexType>
</element>

<element name="loc" type="xl:locatorType" substitutionGroup="xl:locator">
 <annotation>
 <documentation>
 Concrete locator element. The loc element is the XLink locator element for all extended links in XBRL.
 </documentation>
 </annotation>
</element>

<element name="labelArc" type="xl:arcType" substitutionGroup="xl:arc">
 <annotation>
 <documentation>
 Concrete arc for use in label extended links.
 </documentation>
 </annotation>
</element>

<element name="referenceArc" type="xl:arcType" substitutionGroup="xl:arc">
 <annotation>
 <documentation>
 Concrete arc for use in reference extended links.
 </documentation>
 </annotation>
</element>

<element name="definitionArc" type="xl:arcType" substitutionGroup="xl:arc">
 <annotation>
 <documentation>
 Concrete arc for use in definition extended links.
 </documentation>
 </annotation>
</element>

<element name="presentationArc" substitutionGroup="xl:arc">
 <complexType>
 <annotation>
 Extension of the extended link arc type for presentation arcs. Adds a preferredLabel attribute that documents the role attribute value of preferred labels (as they occur in label extended links).
 </annotation>
 <complexContent>
 <extension base="xl:arcType">
 <attribute name="preferredLabel" use="optional">
 <simpleType>
 <restriction base="anyURI">
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
 </complexType>
</element>

<element name="calculationArc" substitutionGroup="xl:arc">
 <complexType>
<annotation>
 <documentation>
 Extension of the extended link arc type for calculation arcs.
 Adds a weight attribute to track weights on contributions to summations.
 </documentation>
</annotation>

<complexType>
 <extension base="xl:arcType">
 <attribute name="weight" type="decimal" use="required" />
 </extension>
</complexType>

<element name="footnoteArc" type="xl:arcType" substitutionGroup="xl:arc">
 <annotation>
 <documentation>
 Concrete arc for use in footnote extended links.
 </documentation>
 </annotation>
</element>

<element name="label" substitutionGroup="xl:resource">
 <annotation>
 <documentation>
 Definition of the label resource element.
 </documentation>
 </annotation>
 <complexType mixed="true">
 <complexContent mixed="true">
 <extension base="xl:resourceType">
 <sequence>
 <any namespace="http://www.w3.org/1999/xhtml" processContents="skip" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute ref="xml:lang" use="required" />
 </extension>
 </complexContent>
 </complexType>
</element>

<element name="part" type="string" abstract="true">
 <annotation>
 <documentation>
 Definition of the reference part element - for use in reference resources.
 </documentation>
 </annotation>
</element>

<element name="reference" substitutionGroup="xl:resource">
 <annotation>
 <documentation>
 Definition of the reference resource element.
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <extension base="xl:resourceType">
 <sequence>
 <element ref="link:part" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>
<element name="footnote" substitutionGroup="xl:resource">
 <annotation>
 <documentation>
 Definition of the reference resource element
 </documentation>
 </annotation>
 <complexType mixed="true">
 <complexContent mixed="true">
 <extension base="xl:resourceType">
 <sequence>
 <any namespace="http://www.w3.org/1999/xhtml" processContents="skip"
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute ref="xml:lang" use="required" />
 </extension>
 </complexContent>
 </complexType>
</element>

<element name="presentationLink" substitutionGroup="xl:extended">
 <annotation>
 <documentation>
 presentation extended link element definition.
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:presentationArc" />
 </choice>
 </restriction>
 </complexContent>
 </complexType>
</element>

<element name="definitionLink">
 <annotation>
 <documentation>
 definition extended link element definition
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:definitionArc" />
 </choice>
 </restriction>
 </complexContent>
 </complexType>
</element>

<element name="calculationLink">
 <annotation>
 <documentation>
 calculation extended link element definition
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:definitionArc" />
 </choice>
 </restriction>
 </complexContent>
 </complexType>
</element>
<complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:calculationArc" />
 </choice>
 </restriction>
 </complexContent>
</complexType>

<element name="labelLink">
 <annotation>
 <documentation>
 label extended link element definition
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:labelArc" />
 <element ref="link:label" />
 </choice>
 </restriction>
 </complexContent>
 </complexType>
</element>

<element name="referenceLink">
 <annotation>
 <documentation>
 reference extended link element definition
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:referenceArc" />
 <element ref="link:reference" />
 </choice>
 </restriction>
 </complexContent>
 </complexType>
</element>

<element name="footnoteLink">
 <annotation>
 <documentation>
 footnote extended link element definition
 </documentation>
 </annotation>
 <complexType>
 <complexContent>
 <restriction base="xl:extendedType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="xl:title" />
 <element ref="link:documentation" />
 <element ref="link:loc" />
 <element ref="link:footnoteArc" />
 <element ref="link:footnote" />
 </choice>
 </restriction>
 </complexContent>
 </complexType>
</element>
<element name="linkbase">
<annotation>
<documentation>
Definition of the linkbase element. Used to contain a set of zero or more extended link elements.
</documentation>
</annotation>
<complexType>
<complexContent>
<restriction base="xl:simpleType">
<attribute ref="xlink:arcrole" use="required">
<annotation>
<documentation>
This attribute must have the value: http://www.w3.org/1999/xlink/properties/linkbase
</documentation>
</annotation>
</attribute>
</restriction>
</complexContent>
</complexType>
</element>

<element name="linkbaseRef" substitutionGroup="xl:simple">
<annotation>
<documentation>
Definition of the linkbaseRef element - used to link to XBRL taxonomy extended links from taxonomy schema documents and from XBRL instance documents.
</documentation>
</annotation>
<complexType>
<complexContent>
<restriction base="xl:simpleType">
<attribute ref="xlink:arcrole" use="required">
<annotation>
<documentation>
This attribute must have the value: http://www.w3.org/1999/xlink/properties/linkbase
</documentation>
</annotation>
</attribute>
</restriction>
</complexContent>
</complexType>
</element>

<element name="schemaRef" type="xl:simpleType" substitutionGroup="xl:simple">
<annotation>
<documentation>
Definition of the schemaRef element - used to link to XBRL taxonomy schemas from XBRL instance documents.
</documentation>
</annotation>
</element>

<element name="definition" type="string"/>
<documentation>
linkbaseRef role type definitions
</documentation>
</appinfo>

<link:roleType name="calculationLinkbaseRef" usedOn="link:linkbaseRef">
<link:definition>Must contain only calculationLink elements</link:definition>
</link:roleType>
<link:roleType name="definitionLinkbaseRef" usedOn="link:linkbaseRef">
<link:definition>Must contain only definitionLink elements</link:definition>
</link:roleType>
<link:roleType name="labelLinkbaseRef" usedOn="link:linkbaseRef">
<link:definition>Must contain only labelLink elements</link:definition>
</link:roleType>
<link:roleType name="presentationLinkbaseRef" usedOn="link:linkbaseRef">
<link:definition>Must contain only presentationLink elements</link:definition>
</link:roleType>
<link:roleType name="referenceLinkbaseRef" usedOn="link:linkbaseRef">
<link:definition>Must contain only referenceLink elements</link:definition>
</link:roleType>
<link:roleType name="footnoteLinkbaseRef" usedOn="link:linkbaseRef">
<link:definition>Must contain only footnoteLink elements</link:definition>
</link:roleType>
</appinfo>
</annotation>

<annotation>
<documentation>
default extended link role type definitions
</documentation>
</appinfo>

<link:roleType name="link" usedOn="link:calculationLink">
<link:definition>The default standard extended link role for calculation links</link:definition>
</link:roleType>
<link:roleType name="link" usedOn="link:definitionLink">
<link:definition>The default standard extended link role for definition links</link:definition>
</link:roleType>
<link:roleType name="link" usedOn="link:presentationLink">
<link:definition>The default standard extended link role for presentation links</link:definition>
</link:roleType>
<link:roleType name="link" usedOn="link:labelLink">
<link:definition>The default standard extended link role for label links</link:definition>
</link:roleType>
<link:roleType name="link" usedOn="link:referenceLink">
<link:definition>The default standard extended link role for reference links</link:definition>
</link:roleType>
<link:roleType name="link" usedOn="link:footnoteLink">
<link:definition>The default standard extended link role for footnote links</link:definition>
</link:roleType>
</appinfo>
</annotation>

<annotation>
<documentation>
label resource role type definitions
</documentation>
</appinfo>

<link:roleType name="label" usedOn="link:label">
<link:roleType name="terseLabel" usedOn="link:label">
 Short label for a concept, often omitting text that should be inferable when the concept is reported in the context of other related concepts.
</link:roleType>

<link:roleType name="verboseLabel" usedOn="link:label">
 Extended label for a concept, making sure not to omit text that is required to enable the label to be understood on a stand alone basis.
</link:roleType>

<link:roleType name="positiveLabel" usedOn="link:label">
 Standard label for a concept when the value of the concept is positive.
</link:roleType>

<link:roleType name="positiveTerseLabel" usedOn="link:label">
 Terse label for a concept when the value of the concept is positive.
</link:roleType>

<link:roleType name="positiveVerboseLabel" usedOn="link:label">
 Verbose label for a concept when the value of the concept is positive.
</link:roleType>

<link:roleType name="negativeLabel" usedOn="link:label">
 Standard label of a concept when the value of the concept is negative.
</link:roleType>

<link:roleType name="negativeTerseLabel" usedOn="link:label">
 Terse label of a concept when the value of the concept is negative.
</link:roleType>

<link:roleType name="negativeVerboseLabel" usedOn="link:label">
 Verbose label of a concept when the value of the concept is negative.
</link:roleType>

<link:roleType name="positiveLabel" usedOn="link:label">
 Standard label of a concept when the value of the concept is negative.
</link:roleType>

<link:roleType name="negativeTerseLabel" usedOn="link:label">
 Terse label of a concept when the value of the concept is negative.
</link:roleType>

<link:roleType name="negativeVerboseLabel" usedOn="link:label">
 Verbose label of a concept when the value of the concept is negative.
</link:roleType>

<link:roleType name="totalLabel" usedOn="link:label">
The label for a concept for use in presenting values associated with
the concept when it is being reported as the total of a set of other values.

The label for a concept with instantaneous="true" for use in presenting
values associated with the concept when it is being report as a beginning
of period value.

The label for a concept with instantaneous="true" for use in presenting
values associated with the concept when it is being reported as an
end of period value.

Documentation of a concept, providing an explanation of its meaning and
its appropriate usage and any other documentation deemed necessary.

A precise definition of a concept, providing an explanation of its meaning
and its appropriate usage.

An explanation of the disclosure requirements relating to the concept.
Indicates whether the disclosure is mandatory (i.e. prescribed by
authoritative literature), recommended (i.e. encouraged by authoritative
literature),
common practice (i.e. not prescribed by authoritative literature, but
disclosure is common place), or structural completeness (i.e. merely
included to complete the structure of the taxonomy).

An explanation of the rules guiding presentation (placement and/or labeling)
of this concept in the context of other concepts in one or more specific types
of business reports. For example, "Net Surplus should be disclosed on the face
of the Profit and Loss statement".

An explanation of the rules guiding placement of this concept in the context
of other concepts in one or more specific types of business reporting.

An explanation of the method(s) required to be used when measuring values
associated with this concept in business reports.

An explanation of the commentary used on the label.
<link:definition>Any other general commentary on the concept that assists in determining definition, disclosure, measurement, presentation or usage.</link:definition>
</link:roleType>
<link:roleType name="example" usedOn="link:label">
<link:definition>An example of the type of information intended to be captured by the concept.</link:definition>
</link:roleType>
</appinfo>
</annotation>

<annotation>
<documentation>
Reference Resource Role Types
</documentation>
</appinfo>
<link:roleType name="reference" usedOn="link:reference">
<link:definition>Standard reference for a concept</link:definition>
</link:roleType>
<link:roleType name="definitionRef" usedOn="link:reference">
<link:definition>Reference to documentation that details a precise definition of the concept.</link:definition>
</link:roleType>
<link:roleType name="disclosureGuidanceRef" usedOn="link:reference">
<link:definition>Reference to documentation that details an explanation of the disclosure requirements relating to the concept.</link:definition>
</link:roleType>
<link:roleType name="mandatoryDisclosureGuidanceRef" usedOn="link:reference">
<link:definition>Reference to documentation that details an explanation of the mandatory disclosure requirements relating to the concept.</link:definition>
</link:roleType>
<link:roleType name="recommendedDisclosureGuidanceRef" usedOn="link:reference">
<link:definition>Reference to documentation that details an explanation of the recommended disclosure requirements relating to the concept.</link:definition>
</link:roleType>
<link:roleType name="unspecifiedDisclosureGuidanceRef" usedOn="link:reference">
<link:definition>Reference to documentation that details an explanation of the disclosure requirements relating to the concept. Unspecified categories include, but are not limited to common practice and structural completeness. The latter categories do not reference documentation but are indicated in the link role to indicate why the concept has been included in the taxonomy.</link:definition>
</link:roleType>
<link:roleType name="presentationRef" usedOn="link:reference">
<link:definition>Reference to documentation which details an explanation of the presentation or labeling of this concept in the context of other concepts in one or more specific types of financial reports.</link:definition>
</link:roleType>
<link:roleType name="measurementRef" usedOn="link:reference">
<link:definition>Reference concerning the method(s) required to be used when measuring values
associated with this concept in business reports.
</link:definition>
</link:roleType>
<link:roleType name="commentaryRef" usedOn="link:reference">
<link:definition>
Any other general commentary on the concept that assist in determining appropriate usage.
</link:definition>
</link:roleType>
<link:roleType name="exampleRef" usedOn="link:reference">
<link:definition>
Reference to documentation that illustrates by example the application of the concept that assists in determining appropriate usage.
</link:definition>
</link:roleType>
</appinfo>
</annotation>

<annotation>
<documentation>
arc role type definitions
</documentation>
<appinfo>
<link:arcroleType name="parent-child" usedOn="link:presentationArc" cyclesAllowed="undirected">
<link:definition>
This arc role value is used to form a tree. It contains end points that represent a parent and the related child.
</link:definition>
</link:arcroleType>
<link:arcroleType name="summation-item" usedOn="link:calculationArc" cyclesAllowed="none">
<link:definition>
This arc role value is used to show how an item participates in a summation. It consists of an item end point and a summation end point where the item is summed into the summation.
</link:definition>
</link:arcroleType>
<link:arcroleType name="general-special" usedOn="link:definitionArc" cyclesAllowed="undirected">
<link:definition>
This arc role value is used to show a definitional relationship between a generalised concept and its related specialised concept.
</link:definition>
</link:arcroleType>
<link:arcroleType name="essence-alias" usedOn="link:definitionArc" cyclesAllowed="undirected">
<link:definition>
This arc role value is used to show a definitional relationship between a concept that represents a different perspective of another concept.
</link:definition>
</link:arcroleType>
<link:arcroleType name="similar-tuples" usedOn="link:definitionArc" cyclesAllowed="any">
<link:definition>
This arc role value is used to relate tuples that are similar at a definition level despite differences at a content model level.
</link:definition>
</link:arcroleType>
<link:arcroleType name="requires-element" usedOn="link:definitionArc" cyclesAllowed="any">
<link:definition>
If an instance of the concept at the source of the arc occurs in an XBRL instance then a c-equal instance of the arc’s target concept MUST also occur in the XBRL instance. Fully conformant XBRL processors MUST detect and signal instances in which this relationship is violated.

```
<appinfo>
<annotation>
</schema>

xml-2001-03.xsd (normative)

<?xml version="1.0" encoding="utf-8"?>
<!-- DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "XMLSchema.dtd" -->
<x:schema targetNamespace="http://www.w3.org/2001/XMLSchema" xml:lang="en">
<import namespace="http://www.w3.org/1999/xlink"/>
<import namespace="http://www.w3.org/2001/XMLSchema"
    schemaLocation="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified"/>
    xmlns:xs="http://www.w3.org/2001/XMLSchema"/>
<xs:element name="name" type="string" substitutionGroup="link:part" id="name"/>
<xs:element name="number" type="string" substitutionGroup="link:part" id="number"/>
<xs:element name="paragraph" type="string" substitutionGroup="link:part" id="paragraph"/>
<xs:element name="subparagraph" type="string" substitutionGroup="link:part" id="subparagraph"/>
<xs:element name="clause" type="string" substitutionGroup="link:part" id="clause"/>
<xs:element name="pages" type="string" substitutionGroup="link:part" id="pages"/>
</xs:schema>

xbir-ref-2003-07-31.xsd (normative)

<?xml version="1.0" encoding="utf-8"?>
<!-- (c) XBRL International. See www.xbrl.org/legal -->
<xs:schema targetNamespace="http://www.xbrl.org/2003/ref"
    xmlns:ref="http://www.xbrl.org/2003/ref"
    xmlns:xlink="http://www.w3.org/1999/xlink"
    xmlns:link="http://www.xbrl.org/2003/linkbase"
    xmlns="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified">
    <import namespace="http://www.xbrl.org/2003/linkbase"
        schemaLocation="xbrl-linkbase-2003-07-31.xsd"/>
    <xs:element name="name" type="string" substitutionGroup="link:part" id="name"/>
    <xs:element name="number" type="string" substitutionGroup="link:part" id="number"/>
    <xs:element name="paragraph" type="string" substitutionGroup="link:part" id="paragraph"/>
    <xs:element name="subparagraph" type="string" substitutionGroup="link:part" id="subparagraph"/>
    <xs:element name="clause" type="string" substitutionGroup="link:part" id="clause"/>
    <xs:element name="pages" type="string" substitutionGroup="link:part" id="pages"/>
</xs:schema>
<xs:annotation>
  <xs:documentation>
  </xs:documentation>
</xs:annotation>

<xs:annotation>
  <xs:documentation>
  This schema defines attributes and an attribute group suitable for use by schemas wishing to allow xml:base, xml:lang or xml:space attributes on elements they define. To enable this, such a schema must import this schema for the XML namespace, e.g. as follows:

  &lt;schema ...>
  &lt;import namespace="http://www.w3.org/XML/1998/namespace"
  schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>

  Subsequently, qualified reference to any of the attributes or the group defined below will have the desired effect, e.g.

  &lt;type ...>
  &lt;attributeGroup ref="xml:specialAttrs"/>

  will define a type which will schema-validate an instance element with any of those attributes
  </xs:documentation>
</xs:annotation>

<xs:annotation>
  <xs:documentation>
  In keeping with the XML Schema WG's standard versioning policy, this schema document will persist at http://www.w3.org/2001/03/xml.xsd. At the date of issue it can also be found at http://www.w3.org/2001/xml.xsd. The schema document at that URI may however change in the future, in order to remain compatible with the latest version of XML Schema itself. In other words, if the XML Schema namespace changes, the version of this document at http://www.w3.org/2001/xml.xsd will change accordingly; the version at http://www.w3.org/2001/03/xml.xsd will not change.
  </xs:documentation>
</xs:annotation>

<xs:attribute name="lang" type="xs:language">
  <xs:annotation>
  In due course, we should install the relevant ISO 2- and 3-letter codes as the enumerated possible values. .
  </xs:annotation>
</xs:attribute>

<xs:attribute name="space" default="preserve">
  <xs:simpleType>
  <xs:restriction base="xs:NCName">
  <xs:enumeration value="default"/>
  <xs:enumeration value="preserve"/>
  </xs:restriction>
</xs:simpleType>
<xs:simpleType name="nonEmptyURI">
  <annotation>
    <documentation>
      A URI type with a minimum length of 1 character. Used on role and arcrole and href elements.
    </documentation>
  </annotation>
  <restriction base="anyURI">
    <minLength value="1"/>
  </restriction>
</xs:simpleType>

<xsl:simpleType name="typeEnum">
  <annotation>
    <documentation>
      Enumeration of values for the type attribute
    </documentation>
  </annotation>
  <restriction base="string">
    <enumeration value="simple"/>
    <enumeration value="extended"/>
    <enumeration value="locator"/>
    <enumeration value="arc"/>
    <enumeration value="resource"/>
    <enumeration value="title"/>
  </restriction>
</xs:simpleType>
<simpleType name="showEnum">
  <annotation>
    <documentation>
      Enumeration of values for the show attribute
    </documentation>
  </annotation>
  <restriction base="string">
    <enumeration value="new"/>
    <enumeration value="replace"/>
    <enumeration value="embed"/>
    <enumeration value="other"/>
    <enumeration value="none"/>
  </restriction>
</simpleType>

<simpleType name="actuateEnum">
  <annotation>
    <documentation>
      Enumeration of values for the actuate attribute
    </documentation>
  </annotation>
  <restriction base="string">
    <enumeration value="onLoad"/>
    <enumeration value="onRequest"/>
    <enumeration value="other"/>
    <enumeration value="none"/>
  </restriction>
</simpleType>

<attribute name="type" type="xlink:typeEnum"/>
<attribute name="role" type="xlink:nonEmptyURI"/>
<attribute name="arcrole" type="xlink:nonEmptyURI"/>
<attribute name="title" type="string"/>
<attribute name="show" type="xlink:showEnum"/>
<attribute name="actuate" type="xlink:actuateEnum"/>
<attribute name="label" type="NCName"/>
<attribute name="from" type="NCName"/>
<attribute name="to" type="NCName"/>
<attribute name="href" type="anyURI"/>

xl.xsd (normative)

<?xml version="1.0" encoding="UTF-8"?>
<!-- (c) XBRL International. See www.xbrl.org/legal -->
<schema targetNamespace="http://www.xbrl.org/2001/XLink"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  xmlns:xl="http://www.xbrl.org/2001/XLink"
  xmlns="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified"
  attributeFormDefault="unqualified">
  <import namespace="http://www.w3.org/1999/xlink"
    schemaLocation="xlink.xsd"/>

  <complexType name="documentationType">
    <annotation>
      <documentation>
        Element type to use for documentation of extended links and linkbases.
      </documentation>
    </annotation>
  </complexType>
</schema>
<complexType name="titleType">
<annotation>
<documentation>
Type for the abstract title element - used as a title element template.
</documentation>
</annotation>
<complexContent>
<restriction base="anyType">
<sequence>
<element ref="xl:title" minOccurs="0" maxOccurs="unbounded" />
</sequence>
<attribute ref="xlink:type" use="required"/>
</restriction>
</complexContent>
</complexType>

<complexType name="locatortype">
<annotation>
<documentation>
Generic locator type.
</documentation>
</annotation>
<complexContent>
<restriction base="anyType">
<sequence>
<element ref="xl:title" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute ref="xlink:type" use="required"/>
</restriction>
</complexContent>
</complexType>
<documentation>
This attribute must have a value of "locator".
</documentation>

</annotation>

</attribute>

<attribute ref="xlink:href" use="required" />
<attribute ref="xlink:label" use="required" />
<attribute ref="xlink:role" use="optional" />
<attribute ref="xlink:title" use="optional" />
</restriction>
</complexContent>
</complexType>

<element name="locator" type="xl:locatorType" abstract="true">
<annotation>
<documentation>
Abstract locator element to be used as head of locator substitution group for all extended link locators in XBRL.
</documentation>
</annotation>
</element>

<complexType name="useEnum">
<annotation>
<documentation>
Enumerated values for the use attribute on extended link arcs.
</documentation>
</annotation>
<restriction base="NMTOKEN">
<enumeration value="optional" />
<enumeration value="prohibited" />
</restriction>
</complexType>

<complexType name="arcType">
<annotation>
<documentation>
basic extended link arc type - extended where necessary for specific arcs Extends the generic arc type by adding use, priority and order attributes.
</documentation>
</annotation>
<complexContent>
<restriction base="anyType">
<sequence>
<element ref="xl:title" minOccurs="0" maxOccurs="unbounded" />
</sequence>
<attribute ref="xlink:type" use="required">
<annotation>
<documentation>
This attribute must have a value of "arc".
</documentation>
</annotation>
</attribute>
<attribute ref="xlink:from" use="required" />
<attribute ref="xlink:to" use="required" />
<attribute ref="xlink:arcrole" use="required" />
<attribute ref="xlink:title" use="optional" />
<attribute ref="xlink:show" use="optional" />
<attribute ref="xlink:actuate" use="optional" />
<attribute name="order" type="decimal" use="optional" />
<attribute name="use" type="xl:useEnum" use="optional" />
<attribute name="priority" type="integer" use="optional" />
</restriction>
</complexContent>
</complexType>
<element name="arc" type="xl:arcType" abstract="true">
  <annotation>
    <documentation>
      Abstract element to use as head of arc element substitution group.
    </documentation>
  </annotation>
</element>

<complexType name="resourceType">
  <annotation>
    <documentation>
      Generic type for the resource type element
    </documentation>
  </annotation>
  <complexContent>
    <restriction base="anyType">
      <attribute ref="xlink:type" use="required">
        <annotation>
          <documentation>
            This attribute must have a value of "resource".
          </documentation>
        </annotation>
      </attribute>
      <attribute ref="xlink:label" use="required" />
      <attribute ref="xlink:role" use="optional" />
      <attribute name="id" type="ID" use="optional" />
    </restriction>
  </complexContent>
</complexType>

<element name="resource" type="xl:resourceType" abstract="true">
  <annotation>
    <documentation>
      Abstract element to use as head of resource element substitution group.
    </documentation>
  </annotation>
</element>

<complexType name="extendedType">
  <annotation>
    <documentation>
      Generic extended link type
    </documentation>
  </annotation>
  <complexContent>
    <restriction base="anyType">
      <choice minOccurs="0" maxOccurs="unbounded">
        <element ref="xl:title" />
        <element ref="xl:documentation" />
        <element ref="xl:locator" />
        <element ref="xl:arc" />
        <element ref="xl:resource" />
      </choice>
      <attribute ref="xlink:type" use="required">
        <annotation>
          <documentation>
            This attribute must have a value of "extended".
          </documentation>
        </annotation>
      </attribute>
      <attribute ref="xlink:role" use="required" />
      <attribute ref="xlink:title" use="optional" />
      <attribute name="id" type="ID" use="optional" />
    </restriction>
  </complexContent>
</complexType>
<element name="extended" type="xl:extendedType" abstract="true">
  <annotation>
    <documentation>
      Abstract extended link element at head of extended link substitution group.
    </documentation>
  </annotation>
</element>

<complexType name="simpleType">
  <annotation>
    <documentation>
      Type for the simple links defined in XBRL
    </documentation>
  </annotation>
  <complexContent>
    <restriction base="anyType">
      <attribute ref="xlink:type" use="required">
        <annotation>
          <documentation>
            This attribute must have a value of "simple".
          </documentation>
        </annotation>
      </attribute>
      <attribute ref="xlink:href" use="required" />
      <attribute ref="xlink:arcrole" use="optional" />
      <attribute ref="xlink:role" use="optional" />
      <attribute ref="xlink:title" use="optional" />
      <attribute ref="xlink:show" use="optional" />
      <attribute ref="xlink:actuate" use="optional" />
    </restriction>
  </complexContent>
</complexType>

<element name="simple" type="xl:simpleType" abstract="true">
  <annotation>
    <documentation>
      The abstract element at the head of the simple link substitution group.
    </documentation>
  </annotation>
</element>
B. Document history and acknowledgments (non-normative)

This specification could not have been written without the contribution of many people. The participants in the XBRL Specification Working Group, public commentators, and personal advisors have all played a significant role. The XBRL International Specification Group is chaired by Masatomo Goto, Fujitsu Laboratories of USA, and its vice chair is Hugh Wallis of Hyperion Solutions Corporation. The XBRL International Domain Working Group also produced and refined many issue drafts and final requirements documents that defined the scope and guided the priorities of this version of the specification. The XBRL International Domain working group is chaired by Mark Schnitzer of Morgan Stanley and vice chaired by John Turner of KPMG. In alphabetical order and in addition to those individuals already credited as editors, Peter Calvert of ICAEW, Eric E. Cohen of PricewaterhouseCoopers, Don Dwiggins of UBmatrix, Charles Hoffman of UBmatrix, Josef MacDonald of Ernst & Young, Manabu Mizutani of PCS, David Prather of IASC, Campbell Pryde of KPMG, Noboyuki Sambuchi of Hitachi, and Eiichi Watanabe of TSR, all contributed to the authoring and refinement of requirements and reviewing of the specification.

2003-07-31 [Shuetrim] Made the usedOn attribute a QName and eliminated the enumeration restriction on it. Changed the schema dates to 2003-07-31 from 2003-07-28. Corrected the definition of arc equivalence to cover prohibition of arcs to resources. Introduced the requirement that a DTS must include a taxonomy schema that imports the XBRL-instance schema. Prohibited values of zero for the weight attribute on calculationArc elements. Eliminated the XHTML content in simple links.

2003-07-30 [Shuetrim] Introduced the section on XLink and XBRL. Reorganised the sections on extended links, linkbases and simple links to refer to the new section on XLink and XBRL. Reorganised the section on taxonomy extended links to bring together all materials for each type of extended link into the one sub-section. Reorganised the section on XBRL instances to bring together the various sections dealing with syntax in taxonomy schemas. Clarified the definition of arc equivalence to make the definition no longer contingent on extraneous attribute values. Added the requirement that the balance attribute only be used on items with a monetaryItemType or a type derived therefrom. Clarified the interpretation of tupleTypes being final with respect to extension. Changed the font to Verdana from Times New Roman. Modified restrictions on parent-child arcs to allow undirected cycles. Updated the xbrl-role.xsd schema to reflect the new syntax. Updated the schema appendix to reflect current syntax.

2003-07-29 [Shuetrim] Removed the items types: NOTATIONitemType, NMTOKENItemType, NMTOKENSItemType, IDItemType, IDREFItemType, IDREFSItemType, ENTITYItemType and ENTITIESItemType. Changed the content model for the xbrl element to require a schemaRef element and to require that the schemaRef elements occur first, followed by linkbaseRef elements, followed by the other possible children in any order. Also introduced the requirement that at least one schemaRef element occurs as a child of the xbrl element. Changed the name of the numerator and denominator child elements of the divide element to be called unitNumerator and unitDenominator to avoid a naming clash with the fractionItemType children. Added the documentation element to be used for documentation on linkbase elements and extended link elements. Also introduced the numericContext and nonNumericContext to a
single context element and modified the attributes on items to reference unit and context elements using contextRef and unitRef attributes.

2003-07-22. [Shuetrim] References to MIME type have been removed from the specification. Moved the section on the linkbase related schemas to the appendix listing the text of the various schema documents supporting this specification. Modified the syntax for the unit element to eliminate the multiply element. Added the section on levels of conformance of XBRL processors.

2003-07-20. [Shuetrim] Removed profile attributes. Removed the references to deprecated syntax, eliminating the syntax instead. Removed the alloc, absoluteContext and relativeContext elements from the calculationLink element, removing the capacity for expressing cross-context calculations using the calculationLink. Removed the references to an ability to associate concepts to remote labels. Removed the CWA attribute. Changed all rules expressed in terms of processing errors or fatal errors into rules expressed in terms of MUST and MUST NOT style requirements.

2003-06-09. [Wallis] Numerous editorial changes, clarifications etc. Incorporated changes pursuant to the resolution of comments 025 (no change needed), 030 (no change required), 032, 034, 036, 037, 045, 055

2003-05-16. [Wallis] Incorporated changes pursuant to the resolution of comments 003, 004, 005, 006, 007, 008, 009, 010, 011, 013, 014, 015, 018, 019, 020, 021, 022, 026, 028


2003-04-23. [Hamscher] Edits to incorporate name of release as the name of specification, updated status to Public Working Draft. Updated list of editors, contributors and Acknowledgements. Corrected numerous typographical and style errors caught by Charles Hoffman, Campbell Pryde and Hugh Wallis.


2003-04-20. [Hamscher] Changed the relative context specifiers to use the XML Schema duration type; provided tables detailing the matching rules for absolute contexts; removed proposed absolute and relative context filters; provided an example of an absolute context in use. Consolidated all roles and arc roles as fragments under the http://www.xbrl.org/2003/role namespace URI. Added footnote linkbase material in several places per suggestion of Phillip Engel.

2003-04-17. [Hamscher] Edited arc role material to incorporate distinction between directed and undirected arcs, adding attributes to the arc role definition material, along with changes to schema. Removed composition linkbase material, and rewrote the tuple related material, moving composition linkbase functionality relating to extensions into the definition linkbase, and defining the legal schema constructs appearing in restrictions of the tuple type. Clarified text relating to equality testing in the presence of the precision attribute. Added note clarifying that items may only refer to a context ID that is within the scope of the enclosing xbrl element. Added note clarifying that the general-special arc role has the same semantic intent as 2.0’s definition parent-child arc.

2003-04-14 [Hamscher] Updated material on arc roles and equality definitions. Updated schemas accordingly. Made the symmetry of arc roles more explicit and made explicit the requirement that arcs be symmetric. Added standard “zero” label roles. Added table captions and table of tables. Generalised c-equal to not require identical element names so as to use it in alias-essence definitions. Removed unused references. Changed the absoluteContext and relativeContext types to anyURI so as to allow for remote context definitions.

2003-04-06 [Hamscher] Fixed example text based on suggestions of Rene van Egmond and Don Dwiggins of UBmatrix. Section 5.3 on derived types changed to mandate the derivation of item types by restriction from a provided item type. Corrected miscellaneous typos in examples and schemas detected by Charles Hoffman. Added more to Example 8. Began converting to use of upper case modals. Weakened directions for use of the balance attribute from "MUST" to "MAY" at direction of DWG. Incorporated comments from David vun Kannon and Geoff Shuetrim, adding the "/positive" label role, defining "linkbase namespace" and "instance namespace", clarifying the role of XBRL validation, moving MIME type node to the end, possibly to be removed; changed the profile description to use a set of Boolean attributes while removing the noprojectors profile, adding the pure type and item type, created the ISO4217 namespace and schema, rearranged description of order attribute, made fixes to the absolute and relative context examples. Removed conceptMatch attribute and generalised the arcRole definition mechanism to cover any arc role with concomitant changes to the schema. Replaced occurrences of must, shall and may with MUST and MAY. Added notes regarding the impact of combining schemas with different name spaces on phenomena such as arc overrides and arc role definitions. Rewrote sections relating to equivalence and duplications to provide precise definitions of various notions of equality. Changed the relativecontext and absoluteContext to normal elements instead of resources, and restricted the use of the relativeContext and absoluteContext attributes only within the calculationLink element. Added a calculation linkbase example using relative contexts. Updated the label and reference linkbase role tables to reflect most recent changes from Josef MacDonald. Updated schemas.

2003-03-30 [Hamscher] Added clarifications and other edits from Hugh Wallis, Eric E. Cohen, and others. Revised the four introductory linkbase examples using material provided by Charles Hoffman. Incorporated arcroleType material from Phillip Engel and propagated arcrole syntax changes throughout. Distinguished between XBRL validation and optional calculation linkbase validation. Changed baseProfile to profile as list of tokens and propagated changes throughout. Revised schemas. Fixed typos, replaced "instance document" and variations with "XBRL instance" throughout. Added example captions. Changed the use="required" statement to apply only to the part-whole arc role. Expanded the examples of duplicates and equivalence. Removed sections 6 and 7 (semantics) since this material is now integrated into sections 4 and 5.

2003-03-23 [Hamscher] Added acknowledgement of Domain working group members. Defined the numericItemAttrs attribute group, rootType complex type that disallows nested group elements, disallowed nested segment elements, and otherwise brought consistency to other Schema changes throughout the text. Cleaned up text relating to allowed item types. Defined equality for numeric items in the face of differing values of precision and decimals. Clarified that equality of items is not affected by adding "ID" attributes. Removed the optional unit sub-element in nonNumericContext and multiple segment sub-elements in the entity type. Moved the bulk of the tuple definition material to the linkbase section as a placeholder. Changed arcroles to remove linkprops path element. Added text about arc cycles. Shortened the footnote example. Used the newly DWG approved debit/credit material. Specified the two legal locations for linkbase elements. Added the linkbase element syntax. Provided an example of remote label content and moved this material to the label resource section. Tentatively restricted the linkbaseRef element to empty content. Included schema fragments for every defined element. Removed linkprops component from all defined role and arcrole values. Tentatively added three negative label roles pending DWG approval. Added a tentative table of reference resource roles. Added mention of XML Base in three places and note regarding absolute URI usage in two. Incorporated material from Geoff Shuetrim into the composition linkbase, which includes the tuple arc, sequence resource, and choice resource. Removed element-dimension from the calculation linkbase and incorporated text into the definition linkbase for the alias-essence relationship.

2003-03-11 [Hamscher] Began revisions to relativeContext and absoluteContext and miscellaneous fixes to schema material.
2003-03-11 [Shuettrim] Added a section proposing a variant on the calculation link processing model that is sensitive to calculation link role attribute values. Introduced a number of smaller edits and queries regarding the approach in relation to tuples and other areas of significant change since the previous draft.

2003-03-10 [Hamscher] Added relative contexts to the calculation linkbase and the relativeContext element and all its paraphernalia. Tentatively added absolute contexts. Redefined equivalence so as to ignore non-XBRL attributes and rely only on tuple elements. Added example of tuple scoping for calculation arcs. Removed the stock-flow and flow-stock arcroles. Added additional explanatory text to the abstract. Separated the explanation of linkbases from taxonomies and schemas. Added table of primitive and derived types and item types. Tightened up language around the href attribute of linkbaseRef. More formatting tweaks particularly to non-normative examples.

2003-03-07 [Hamscher] Changed the baseProfile attribute to a URI. Added ”0.0” as a legal value for the weight attribute on calculationArc. Added additional material regarding schemaLocation. Added list of legal item types.

2003-03-06 [Hamscher] Changed stockFlow to instantaneous to generalise. Added example of Spanish and Portuguese labels to reinforce the point that schemas and linkbases can be mixed and matched by any given schema. Defined “identical” “equivalent” and in some cases, “matching,” and used these to rewrite context processing and duplicate items. Defined “inconsistency” of decimals and precision attributes. Changed xbrlPrecision to precisionType, etc. Added the baseProfile attribute and noted inline where it impacts the scope of XBRL syntax recognised. Moved the order attribute to appear on all arc elements. Yet more formatting changes, small fixes to examples and schema fragments but these still need to be finalised with published schemas.

2003-02-18 [Hamscher] Responded to comments from Hugh Wallis and Geoff Shuettrim, in most cases by editing the text as requested, and noted areas requiring further resolution. Tried to increase the consistency of formatting, in particular to indicate all normative material as unshaded even when appearing inside a table.

2003-02-08 [Wallis] Numerous editorial changes and comments added. Changed, deleted and added sections about precision and decimals. Added definitions section. Added a fractionItemType data type.

2003-01-27 [Hamscher] Added normative text relating to arcroles. Removed the reference-actual and actual-reference arcroles to conform with Linkbase clarity issues. Revised the section on arcrole to conform to linkbase clarity requirements insofar as they are currently defined. Described the definitionArc as a “specialisation / generalisation” arc. When used to define a tuple, the relationship is actually a part-whole relationship, as noted when defining the constraint that children of a tuple definition must not appear in XBRL instances except when wrapped by the parent. Added placeholders for numeric precision and decimal sections. Removed anySimpleType from the schema. Changed references to 2.1 to Tulip. Reformatted entire document based on more recent XBRL International documents. Changed example uses of <group> to <xbrl>.

2003-01-22 [vun Kannon] Added material clarifying the syntax and semantics of tuples.

2003-01-19 [Shuettrim] Added material relating to linkbase clarity, and all new roles for label resources.

2002-09-05 [vun Kannon] Released as internal working draft of 2.1 specification. Included stockFlow and balance attributes and XML Schema primitive data types.


2002-01-09 [vun Kannon] Corrected the discussion of the datatype of item to refer to anySimpleType.
explanation that we are differing from XML Schema convention. Miscellaneous typo corrections.

2000-03-24 [Hamscher] Changed text references to "taxonomy attribute" to schemaLocation. Fixed typo in example of 3.12. Fixed the period definition with a better reference for ISO 8601 than the incomplete summary given in the W3C material. Miscellaneous typo corrections.


C. Intellectual property status (non-normative)

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to XBRL International or XBRL organizations, except as required to translate it into languages other than English. Members of XBRL International agree to grant certain licenses under the XBRL International Intellectual Property Policy (www.xbrl.org/legal).

This document and the information contained herein is provided on an "AS IS" basis and XBRL INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The attention of users of this document is directed to the possibility that compliance with or adoption of XBRL International specifications may require use of an invention covered by patent rights. XBRL International shall not be responsible for identifying patents for which a license may be required by any XBRL International specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. XBRL International specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents. XBRL International takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Members of XBRL International agree to grant certain licenses under the XBRL International Intellectual Property Policy (www.xbrl.org/legal).
D. Approval process (non-normative)

The approval process follows that described in xbrl-processes-REC-2002-04-02. This section will be removed from the final Recommendation.

<table>
<thead>
<tr>
<th>Stage (* - Current)</th>
<th>Party responsible for decision</th>
<th>Next step</th>
<th>Revisions needed</th>
<th>Target date for stage completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Internal WD</td>
<td>Spec. WG + Domain WG</td>
<td>Recommend for Stage 2</td>
<td>Stay in Stage 1</td>
<td>2003-04-08</td>
</tr>
<tr>
<td>2 * Internal WD pending publication.</td>
<td>ISC</td>
<td>Approve for Stage 3</td>
<td>Return to Stage 1</td>
<td>2003-04-22</td>
</tr>
<tr>
<td>3 Public WD under 60 day review</td>
<td>WD Editor(s)</td>
<td>Minor revisions – to Stage 4</td>
<td>Major revisions, Restart Stage 1</td>
<td>2003-06-25</td>
</tr>
<tr>
<td>4 Draft Recommendation</td>
<td>Spec WG + Domain WG</td>
<td>Recommend for Stage 5</td>
<td>Restart Stage 3</td>
<td>2003-06-30</td>
</tr>
<tr>
<td>5 Recommendation pending publication</td>
<td>ISC</td>
<td>Approve for Stage 6</td>
<td>Restart Stage 4</td>
<td>2003-07-15</td>
</tr>
<tr>
<td>6 Recommendation</td>
<td>Done</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>