
XBRL INTERNATIONAL PUBLIC WORKING DRAFT

XBRL Formula Requirements
Public Working DRAFT of Tuesday, 20 April 2004

This file:

Formula-Req-PWD-2004-04-20.doc

Updates the public working draft originally posted at:

http://www.xbrl.org/tr/2002/XBRL-Rule-Base-Req-WD-2002-11-16.doc

Editors
Name Contact Affiliation

Walter Hamscher1 walter@hamscher.com Standard Advantage

Contributors
Geoff Shuetrim gshuetrim@kpmg.com.au KPMG LLP
David vun Kannon dvunkannon@kpmg.com KPMG LLP

Status of this document
This is a public working draft whose circulation is unrestricted. It may change and is not
appropriate to reference from public documents. Comments should be directed to the editor
and/or contributors by e-mail. Recipients of this draft are invited to submit, with their
comments, notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Table of contents
Editors...1
Contributors ...1
Status of this document ...1
Table of contents...1
1 Motivation (non-normative) ...2
2 Use cases ...4
3 Linkbase-related requirements ... 24
4 Processing-related Requirements.. 26
5 Expression-related Requirements ... 27
6 Fact-binding Requirements .. 29
7 Result Expression Requirements... 31
8 Approval requirements.. 33
9 Proposed requirements ... 35
10 Rejected requirements and use cases.. 36
11 Document history (non-normative) ... 38
12 Intellectual Property Status (non-normative).. 40
13 References (non-normative) .. 40
Appendix: Approval process (non-normative) .. 42

1 Walter Hamscher is a consultant to PricewaterhouseCoopers.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 1 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

1 Motivation (non-normative)
To effectively exchange business reporting information between a producing and a consuming
application often requires the applications to perform validation on data types and values,
apply consistency checks, test data quality, augment the data with calculated values and
possibly corrections, and to provide feedback to the producing application that indicates the
nature and severity of problems encountered. A producing application may also add
calculated values and perform tests on its own outputs before sending results to consuming
applications. Applications based on the exchange of spreadsheets that contain both data and
formulas are common but present maintenance problems; here the intent is explicitly to
separate the representation and location of formulas and validation criteria from a given
instance.

These different functions are characteristic of many XBRL-enabled applications. That is
because it is a goal of XBRL to allow applications to consume XBRL formatted business
information no matter what its original source. Data entry validation (e.g., prohibiting dates
such as February 31, 2001 from entering the system) is a familiar example of using a formula
to flag errors, but the breadth and scope of formulas is much broader than this. Good
information management practice generally recognizes that validations should be tested,
adhered to, and corrections made as far “upstream” in an information supply chain as possible
– recognizing, of course, that the same tests may be applied repeatedly as data makes its way
from its many possible origins, to its many ultimate destinations.

Any general programming language could be used to perform computations on business data.
However, there is regularity in business reporting information: regularity that is encoded in
XBRL in instance constructs such as “facts,” “periods,” “entities,” and in taxonomies as items,
definitions, and other relationships. Furthermore, applications that consume XBRL should be
able to “publish the formulas” that govern documents containing XBRL data, so that producing
applications can test and apply those formulas and thereby reduce delay, rework and
retransmissions, and smooth and accelerate the flow of business reporting information.

Rule languages—in which rules are expressed as patterns to be matched and actions to be
taken when the data matches the pattern—have a rich tradition and are nearly as old as
Computer Science itself ([Newell, 1962]), enjoyed a heyday in the 1980’s for the
programming of “expert systems”, and today rule languages live on in languages such as
Prolog, and in commercial products such as the Blaze Rule Engine [HNC] and JRules [ILOG].
Rule languages tend to be fairly compact and concise and resemble a database of logical
sentences (“all people are mortal” “if X is a mountain, then the elevation of X must be
positive”). They declare the rules to be obeyed, and an interpreter (or compiler) is
responsible for efficiently executing the rules (matching patterns and executing actions)
correctly when presented with incoming data.

Even if we set aside the goal of synthesizing information and are content merely to detect
violation of constraints, XML Schema [XSDL] itself is still not sufficient to this task because it
allows the validation of individual data elements (“Revenues are a 12-digit nonnegative
number”) and structural relationships (e.g., “an invoice must contain a header, a list of items,
and an amount”) but does not express constraints between elements, also known as co-
constraints (“if more than 10 dependents are claimed then Schedule K must be completed”).
Besides, the nature of rules is that they generally compute a whole series of results, some of
which may be considered fatal errors, others as warnings, others as merely informational; an
XML Schema validator mainly detects fatal errors. Other general programming languages,
including XML Schema Transformation [XSLT], could be pressed into service since they have
the requisite pattern-action structure, but these neither take any account nor take any
advantage of the constrained nature of XBRL instances, taxonomies, and so on.

XBRL-specific formulas are well motivated. The language would be, like XBRL itself, suitable
for publishing and transporting between applications; it would exploit the XBRL language itself,
and provide a concise and well constrained way of expressing common rules such as “Net
Receivables cannot be negative,” “Net revenues are the difference between Gross revenues
and Gross expenses,” “Unless income for the previous quarter was zero, income growth for

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 2 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

the quarter is the ratio of the change in income between the current and previous quarter,
divided by the income of the previous quarter,” and so on. The earliest discussions of XBRL
acknowledged the need to express not only specific numeric facts (“1988 Revenue for TLA Inc.
was $40m”), but also relationships among those facts (“TLA Inc. revenue consists of TBD Inc.
revenue plus BFD Ltd. Revenue less eliminations”) and general relationships (“The write down
allowance for an asset in any year after 1993 is limited to 25% of its original purchase price”).
There has now been sufficient experimentation and implementation experience with XBRL for
the exchange of business reporting information in live and planned applications to have
illustrated both the need for an extension to the language to meet this need, as well as
illustrating deficiencies in schemes used to date and the typical patterns of usage and the
limitations on what that language actually needs to cover. This information is advantageous
to have because it limits the scope and guides the design of the language.

1.1 Terminology and formatting conventions
Terminology used in XBRL frequently overlaps with terminology from other fields. The
terminology used in this document is summarised in Table 1.

Table 1. Terminology

abstract element, bind, concept, concrete
element, context, Discoverable Taxonomy
Set (DTS), duplicate items, duplicate
tuples, element, entity, equal, essence
concept, fact, instance, item, least
common ancestor, linkbase, period,
taxonomy, tuple, unit, taxonomy schema,
child, parent, sibling, grandparent, uncle,
ancestor, XBRL instance, c-equal, p-
equal, s-equal, u-equal, v-equal, x-equal,
minimally conforming XBRL processor,
fully conforming XBRL processor.

As defined in [XBRL].

MUST, MUST NOT, REQUIRED, SHALL,
SHALL NOT, SHOULD, SHOULD NOT,
MAY, OPTIONAL

See [RFC2119] for definitions of these and other
terms. These include, in particular:

SHOULD Conforming documents and
applications are encouraged to
behave as described.

MUST Conforming documents and
consuming applications are required
to behave as described; otherwise
they are in error.

expression An expression using constants, variables, arithmetic,
logical, and functional operators.

formula An expression along with criteria that indicate the
domain of each variable in that expression and how
they are to be bound.

rule The term “rule” is not used in this version of the
requirement, although it appeared previously as a
synonym for “formula”.

variable A “variable” appears in expressions as a symbol that

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 3 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

the application of a formula binds to a value, so that
the expressions of that formula can be evaluated.

argument An “argument” of a formula is a formal parameter
bound to some portion of an input instance. Some
of the arguments will be identified as variables to be
used in expressions.

The following highlighting is used for positive examples:

Example 1. Example of an example

Counterexamples indicate incorrect or unsupported examples:

Example 2. Example of a counterexample

Selections from other normative documents is highlighted thus:

Example 3. Example of normative material

Non-normative editorial comments are denoted as follows and removed from final
recommendations:

WH: This highlighting indicates editorial comments about the current
draft, prefixed by the editor’s initials.

Italics are used for rhetorical emphasis only and do not convey any special normative meaning.

Distinctively bracketed and coloured numbers {1.2.3} refer to that particular numbered
section of the XBRL 2.1 Specification Recommendation [XBRL].

1.2 Normative status
This document is normative in the sense that any formula specification recommendations by
XBRL International MUST satisfy the requirements as they are stated here.

This document version depends upon XBRL 2.1 Specification Recommendation [XBRL].

XBRL Specification 2.1 does not depend in any way upon this document.

1.3 Language independence
The official language of XBRL International’s own work products is English and the preferred
spelling convention is UK English. Unless otherwise stated, XBRL specifications must not
require XBRL users to use English in documentation, item, tuple, entity, scenario or any other
elements.

2 Use cases
The general use case for an XBRL formula specification is the externalisation and publication of
a set of formulas that will be applied by a consuming application:

• A financial regulator collecting quarterly balance sheets and income statements;

• A statistical agency collecting market valuations of various asset categories;

• A tax authority accepting electronic tax filings;

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 4 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

• A stock exchange accepting registration requests;

• A bank evaluating loan applications or checking loan covenants;

More specifically, there are three general needs these consuming applicaitons may have:

1. Validating an XBRL instance and indicating success or failure. In this case, no XML or
XBRL output is really needed.

2. Validating an XBRL instance and providing detailed error messages. In this case,
general XML output—for further processing and rendering as appropriate by an
application—would seem to be sufficient.

3. Transforming, adjusting, composing or creating XBRL instances based on existing
XBRL instances. In this case, it is sensible for a formula processor to produce a valid
XBRL instance. If producing applications verify that their own output will be accepted
by those consuming applications, significant efficiencies are possible, particularly in a
distributed environment such as the Internet.

These needs are not mutually exclusive, but are increasing level of ambition. Underlying all of
the use cases below is the presumption that because level 3 above does subsume the other
two, it is the level of functionality being sought. Therefore, the specific use cases driving the
formula requirements are expressed as “before” and “after” fact sets and instances, along with
a structured description of the relevant generalisation of the behaviour illustrated by that case.

The use cases below all depend on a single taxonomy shown in Figure 1 consisting mainly of
financial position and performance items.

Figure 1. Items Appearing in Use Cases
@name @type @periodType Label (en, standard)
Assets monetaryItemType instant Assets

CurrentAssets monetaryItemType instant Current Assets
FixedAssets monetaryItemType instant Fixed Assets

Equity monetaryItemType instant Equity
Shares sharesItemType instant Shares
Price monetaryItemType instant Price

Earnings monetaryItemType duration Earnings
AvgShares sharesItemType duration Average Shares

PE pureItemType instant Price-Earnings Ratio
ROE pureItemType instant Return on Equity
EPS decimalItemType duration Earnings per Share

AssetsEquity pureItemType instant Assets-to-Equity Ratio
Rating integerItemType instant Rating

AssetsOkay booleanItemType instant Assets Okay
EquityOkay booleanItemType instant Equity Okay

AssetsMessage stringItemType instant Assets Message
AssetsLB booleanItemType instant Assets in Lower Bound
AssetsUB booleanItemType instant Assets in Upper Bound

AssetsLarge booleanItemType instant Assets not too Large
AssetsSmall booleanItemType instant Assets not too Small

IntangiblesPatents monetaryItemType instant Intangibles (Patents)
IntangiblesClass stringItemType instant Intangibles Class
IntangibleGross monetaryItemType instant Intangible Gross
IntangibleReserve monetaryItemType instant Intangible Reserve
IntangibleNet monetaryItemType instant Intangible Net
IntangibleAsset tupleType Intangible Asset
AutoWriteDown tupleType Automobile Write-Down

AutoName tokenItemType duration Automobile Name
AcquisitionDate dateItemType duration Acquisition Date

WriteDownAllowance monetaryItemType duration Write-Down Allowance
WDVBroughtForward monetaryItemType duration Write-Down Value Brought Forward

UsefulLife durationItemType duration Useful Life

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 5 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

All facts in the use cases have a unitRef and contextRef drawn from the units and contexts
shown in Figure 2 and Figure 4, respectively. The namespace prefix si refers to international
standard scientific units.

Figure 2. Units Appearing in Use Cases
@id measure
usd iso4217:USD
gbp iso4217:GBP
pure xbrli:pure
shs xbrli:shares
usdsh iso4217:USD/xbrli:shares
gbpsh iso4217:GBP/xbrli:shares
year si:year

The namespace prefix co with elements aaa and bbb are used to distinguish segments of entity
444. The elements actual, budgeted and variance are used to distinguish scenarios.

Figure 3. Segments and Scenarios Appearing in Use Cases
prefix element
co: <aaa/>
co: <bbb/>
co: <actual/>
co: <budgeted/>
co: <variance/>

Figure 4. Contexts Appearing in Use Cases

@id
entity/
 @identifier

entity/
 segment

period/
 instant

period/
 startDate

period/
 endDate

scenario

c01 333 2003-01-01 2003-12-31
c02 333 2002-12-31
c03 333 2003-12-31
c04 444 2003-01-01 2003-12-31
c05 444 2003-12-31
c06 333 2003-12-31
c07 444 <geo>ON</geo> 2003-01-01 2003-12-31
c08 444 <geo>ON</geo> 2003-12-31
c09 444 <geo>MI</geo> 2003-01-01 2003-12-31
c10 444 <geo>MI</geo> 2003-12-31
c11 444 2003-12-31 <co:actual/>
c12 444 2003-12-31 <co:budgeted/>
c13 444 2003-12-31 <co:variance/>
c14 444 1993-01-01 1993-12-31
c15 444 1995-01-01 1995-12-31
c16 333 2001-12-31
c17 444 <lob>paper</lob> 2003-01-01 2003-12-31
c18 444 <lob>paper</lob> 2003-12-31
c19 444 <lob>plastic</lob> 2003-01-01 2003-12-31
c20 444 <lob>plastic</lob> 2003-12-31

Note that contexts c06 and c03 are s-equal.

The data type of the content in any UsefulLife fact is assumed to be yearMonthDuration; the
XBRL durationItemType does not specify whether fact content is yearMonthDuration or
dayTimeDuration.

Each fact in this document also has a unique identifier such as f42; the identifiers are not
relevant in any way to processing the facts or formulas, but the identifiers allow them to be
referred to in the text.

Expressions are written in XML Path Language 2.0 [XPATH2] and are meant to be transparent
for the example at hand, not in and of itself prescriptive as to the expression language to be

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 6 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

required. Some cases use the syntax of XML Query Language 1.0 [XQuery] to declare
functions; as stated in [XPATH2], “XPath is designed to be embedded in a host language such
as XSLT 2.0 or XQuery… XPath per se does not provide a way to declare functions, but a host
language may provide such a mechanism.” The host language chosen in this example is
XQuery because it allows users to declare functions of their own.

2.1 Formula uses items that are p-equal and u-equal in identical contexts
An important type of formula involves a mathematical operator applied to a pair of items when
they are p-equal, c-equal and u-equal.

Formulas:

item test expression type2 matching

Assets $CurrentAssets +
$FixedAssets INF p-equal, c-equal and u-equal

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f34 FixedAssets c03 usd INF 35000

Result:

@id item @contextRef @unitRef Precision [content]
f13 Assets c03 usd INF 43000

2.2 Formula uses items that are p-equal, u-equal and c-equal
A variation of use case 2.1 above is when items are c-equal without the contexts being
identical.

Formulas:

item test expression type matching
Assets $CurrentAssets + $FixedAssets INF p-equal, c-equal and u-equal

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c06 usd INF 35000

Result:

@id item @contextRef @unitRef Precision [content]
f13 Assets c03 usd INF 43000

The output context is s-equal to c03 and c06. Formula processors should behave consistently
and the specification must define which context to use on output.

2.3 Formula uses items that are p-equal, u-equal and contexts whose
periods differ

Formulas must be able to express relations that cross periods. In this example the value of
any two values for “Shares” that differ by one year are averaged during the intervening
duration.

2 “type” here means either the result type if non numeric, or else the value of the precision or decimals
attribute when the result is numeric.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 7 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Formulas:

item test expression type matching

AvgShares ($SharesNext + $Shares)
div 2 INF

p-equal, u-equal;
“SharesNext” is in a context
offset by one year from “Shares”.

Facts:

@id item @contextRef @unitRef Precision [content]
f05 Shares c02 shs INF 50000
f17 Shares c03 shs INF 60000

Result:

@id item @contextRef @unitRef Precision [content]
f11 AvgShares s-equal to c01 shs INF 55000

The output context, because it is not present among the input facts, must be synthesised by
the formula. In this example it happens to be s-equal to c01. Note that the two inputs are in
“instant” contexts while the output is a “duration” context whose start and end dates are equal
to those of the input instants (taking into account differences in the way startDate and endDate
default the time of day {4.7.2}).

2.4 Formula uses items in contexts that match period endpoints
The matching of input periods may involve matching of endpoints. This example is a simple
movement analysis on the value of Equity.

Formulas:

item test expression type matching
Equity $EquityPrev +

$Earnings
INF p-equal, u-equal;

“EquityPrev” refers to a context in the year
previous to that of “Equity”.

The duration-type period of “Earnings” must
begin at the instant represented by
“EquityPrev”.

Facts:

@id item @contextRef @unitRef Precision [content]
f03 Equity c02 usd INF 17000
f09 Earnings c01 usd INF 9000

Result:

@id item @contextRef @unitRef Precision [content]
f11 Equity s-equal to c03 usd INF 26000

More generally, endpoints may match in any relationship expressible by using comparison
operators (equal, less than, greater than), arithmetic offsets (plus, minus), and constants
(dates, datetimes, durations).

WH: Use cases with richer relative period expressions would be useful.

2.5 Expression yields a new unit of measure
The units of measure of inputs, when multiplied or divided, may yield a different unit of
measure. The unit of measure need not have been previously defined in the input instance.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 8 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Formulas:

item test expression matching
EPS ($Earnings div

$AvgShares)
p-equal, c-equal.

Facts:

@id item @contextRef @unitRef @precision [content]
f36 Earnings c01 usd INF 11000
f11 AvgShares c01 shs INF 55000

Result:

@id item @contextRef @unitRef @precision [content]
f29 EPS c01 usdsh INF 0.2

In this example there are no facts with the unit representing “USD per share”; it is
synthesised by the formula for the output. In this example the precision of the output is
infinite, just like the inputs.

2.6 Formula determines the result units of an expression from the units of
the bound facts

The units of measure of outputs differ depending on the units of the input facts that were
bound. If the result item is a numeric type then the formula specifies the result units as a
function of the input units.

Formulas:

item test expression type matching
EPS ($Earnings div

$AvgShares)
precision=9 and
units(result) =
units(Earnings) /
units(AvgShares)

p-equal, c-equal.

Facts:

@id item @contextRef @unitRef @precision [content]
f09 Earnings c01 usd INF 9000
f10 Earnings c01 gbp INF 5000
f11 AvgShares c01 shs INF 55000

Result:

@id item @contextRef @unitRef @precision [content]
f37 EPS c01 usdsh 9 0.16363636
f38 EPS c01 gbpsh 9 0.09090909

In this example the same formula computes results in the same context having different units
depending on which of two input facts (f09 and f10) were used in the computation. The item
specified in the result (e.g., EPS) determines the item type (e.g., pureItemType) and therefore
constrains the possible units (e.g. pure) {4.8.2}.

Rejected requirement 10.6 below, “* Formulas MAY specify one or more alternative items or
tuples as the possible result of expression evaluation,” would allow a formula to produce either
a decimal or a fraction as the result of a division, but without it the result will always be one or
the other.

2.7 Formula overrides the natural result units of an expression
In this example the units of the Write-Down Allowance that would be determined from the
inputs would be a currency amount “per year”, but the formula must type cast the output to a

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 9 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

currency so as to agree with WriteDownAllowance which is a monetaryItemType and therefore must
have a unit whose measure is an ISO currency type {4.8.2}.

Formulas:

item test expression type matching
WriteDownAllowance $AcquisitionCost div

fn:get-years-from-
yearMonthDuration
($UsefulLife)

precision=INF and
units(result) =

units(AcquisitionCost)

p-equal, c-equal;

Facts:

@id item @contextRef @unitRef @precision [content]
f76 UsefulLife c15 5Y
f78 AcquisitionCost c15 gbp INF 12000
f79 AcquisitionCost c15 usd INF 20000

Result:

@id item @contextRef @unitRef @precision [content]
f80 WriteDownAllowance c15 gbp INF 2400
f81 WriteDownAllowance c15 usd INF 4000

The example shows that the currency (or any other part of the unit) cannot be “hard wired”
into the formula but MUST be determined from the input facts.

2.8 Expression result has limited precision
When an expression containing the division operator uses a fact with precision="INF" as a
divisor, and the result fact of the expression has a denominator with prime factors other than
2 and 5 the result is a repeating decimal without a finite representation.

The precision of a repeating decimal when not otherwise specified will be INF even though its
lexical representation is limited to the number of digits of precision available on the executing
hardware. This reflects the underlying reality of limited machine precision. Formula authors
may choose to limit the precision still further. Moreover, if different processors were allowed
to select their own output precision, formulas would yield different results on different
machines. Therefore, formulas must be able to specify the desired precision of the output.

Formulas:

item test expression type matching
EPS ($Earnings div

$AvgShares)
precision=8 p-equal, u-equal, c-equal.

Facts:

@id item @contextRef @unitRef @precision [content]
f09 Earnings c01 usd INF 9000
f11 AvgShares c01 shs INF 55000

Result:

@id item @contextRef @unitRef @precision [content]
f37 EPS c01 usdsh 8 0.1636363636363636363

The computation 9000/55000 yields a repeating decimal (.1636363…) whose lexical
representation is limited to 18 digits by the default data type (double) of the executing
processor.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 10 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

2.9 Expression result has limited number of decimal places
Similarly to use case 2.6 above, the result may also be specified to a number of decimal
places rather than by precision.

Formulas:

item test expression type matching
EPS ($Earnings div

$AvgShares)
decimals=7 p-equal, u-equal, c-equal.

Facts:

@id item @contextRef @unitRef @precision [content]
f09 Earnings c01 usd INF 9000
f11 AvgShares c01 shs INF 55000

Result:

@id item @contextRef @unitRef @decimals [content]
f38 EPS c01 usdsh 7 0.1636364

2.10 Formulas may be prohibited
An extension {3.2} {3.5.3.9.7.5} of a set of formulas may need to change the method by
which an item is computed in a base set of formulas. In this example, the simpler calculation
of EPS is in the base set of formulas:

Formulas:

item test expression type matching
EPS ($Earnings div $Shares) decimals=7 p-equal;

Shares context period/instant =
Earnings context period/endDate.

An extension set of formulas then prohibits that formula, and asserts a different one:

Formulas:

item test expression type matching
EPS ($Earnings div $Shares) decimals

=7
p-equal;
Shares context period/instant =
Earnings context period/endDate.

EPS ($Earnings div
$AvgShares)

decimals
=7

p-equal, c-equal.

Facts:

@id item @contextRef @unitRef @precision [content]
f36 Earnings c01 usd INF 11000
f11 AvgShares c01 shs INF 55000
f17 Shares c03 shs INF 60000

Result:

@id item @contextRef @unitRef @precision [content]
f29 EPS c01 usdsh INF 0.2

In this example, the calculation based on average shares is used and only one value of EPS is
calculated.

2.11 Incompatible formulas are distinguishable
Formulas maintained in the same set may provide alternative, possibly incompatible
definitions for the same item. In this example, EPS for some purposes is computed using the

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 11 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

average number of shares during the earnings period, and for other purposes using the
number of shares at the end of the period.

Formulas:

item test expression type matching
EPS “method 1” ($Earnings div

$AvgShares)
decimals=7 p-equal, c-equal.

EPS “method 2” ($Earnings div $Shares) decimals=7 p-equal;
Shares context period/instant =
Earnings context period/endDate.

Facts:

@id item @contextRef @unitRef @precision [content]
f36 Earnings c01 usd INF 11000
f11 AvgShares c01 shs INF 55000
f17 Shares c03 shs INF 60000

Result:

@id item @contextRef @unitRef @precision [content]
f29 EPS c01 usdsh INF 0.2
f67 EPS c01 usdsh 9 0.183333333

In this example, only one of the two results should be computed, depending on whether the
(set of) formulas labelled “method 1” or “method 2” are selected for processing. The
xlink:role attribute may be an appropriate way to model this, since the evaluation of the
condition does not depend in any way on the facts in the instance.

2.12 Formula has a precondition on item values
Setting a precondition on an item value may be needed to ensure the expression is meaningful
and will not cause an evaluation error.

Formulas:

item test expression type matching
PE ($EPS gt

0)
($Price div

$EPS)
INF p-equal, u-equal;

Context of “Price” has a period that is the
instant which ends that of “Earnings”.

Facts:

@id item @contextRef @unitRef @precision [content]
f19 Price c03 usdsh INF 11.2
f29 EPS c01 usdsh INF .2
f20 Price c03 gbpsh INF 5.2
f30 EPS c01 gbpsh INF -0.8

Result:

@id item @contextRef @unitRef @precision [content]
f21 PE c03 pure INF 56

This is an example in which the condition of one pair of facts (f19 and f29) evaluates to true,
the other pair (f20 and f30) to false.

2.13 Formula applies only to certain time periods
Facts may match the formula only if they fall within a named time period. Note that because
every item has a fixed periodType, it is not necessary to be able to specify the kind of period of
which the fact is asserted, because that is implicit in the item itself.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 12 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Formulas:

item test expression type matching
AssetEquity ($Equity gt

0)
$Assets div
$Equity

precision=10 p-equal, u-equal, c-equal;
Context must have a period
whose endpoint is strictly
before 2003-01-01.

Facts:

@id item @contextRef @unitRef @precision [content]
f01 Assets c02 usd INF 100000
f03 Equity c02 usd INF 17000
f13 Assets c03 usd INF 43000
f15 Equity c03 usd INF 26000

Result:

@id item @contextRef @unitRef @precision [content]
f31 AssetEquity c02 pure 10 5.882352941

In this example, one pair of facts (f01 and f03) evaluates the condition to true and the other
(f13 and f15) evaluates it to false.

2.14 Formula applies only to certain units
Facts may match the formula only if the units match.

Formulas:

item test expression type matching
AssetEquity ($Equity gt

0)
$Assets div
$Equity

precision=10 p-equal, u-equal, c-equal;
Assets context must have
unit/measure = ISO4217:USD

Facts:

@id item @contextRef @unitRef @precision [content]
f01 Assets c02 usd INF 100000
f03 Equity c02 usd INF 17000

f02 Assets c02 gbp INF 43000

f04 Equity c02 gbp INF 26000

Result:

@id item @contextRef @unitRef @precision [content]
f31 AssetEquity c02 pure 10 5.882352941

In this example, one pair of facts (f01 and f03) evaluates the condition to true and the other
(f02 and f04) evaluates it to false.

2.15 Formula applies only to the latest period in an instance
Facts may match the formula only if they fall within a time period that is described as the
“latest” period in the instance. This is an extension of use case 2.13 above which allowed
matching against a fixed time period.

Formulas:

item test expression type matching
AssetEquity ($Equity gt

0)
$Assets div
$Equity

precision=18 p-equal, u-equal, c-equal;
Context must have a period
that is the latest occurring
in the input instance.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 13 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Facts:

@id item @contextRef @unitRef @precision [content]
f01 Assets c02 usd INF 100000
f03 Equity c02 usd INF 17000
f13 Assets c03 usd INF 43000
f15 Equity c03 usd INF 26000

Result:

@id item @contextRef @unitRef @precision [content]
f31 AssetEquity c03 pure 18 1.653846153846153846

In this example, one pair of facts (f01 and f03) evaluates the condition to false and the other
(f13 and f15) evaluates it to true. The latest period among the inputs is the instance
2003-12-31.

2.16 Expression contains a conditional
Conditional expressions and nested conditionals can test several conditions in sequence. In
this example a continuous P/E ratio is mapped to one of three discrete values of Rating.

Formulas:

item test expression type matching
Rating if ($PE gt 5) then 1

else if ($PE gt 10) then
2
else 3

INF

Facts:

@id item @contextRef @unitRef @precision [content]
f21 PE c03 pure INF 56
f22 PE c02 pure INF -6.5

Result:

@id item @contextRef @unitRef @precision [content]
f39 Rating c03 pure INF 3
f40 Rating c02 pure INF 1

In principle, any conditional expression could be recast as a series of separate formulas with
non-overlapping conditions (this example would require three formulas, with one having the
condition “5 ≤ PE and PE < 10”).

2.17 Precondition tests date items in historical period
Setting a precondition on an item value may be part of defining its scope of applicability.

In this example, historical data (Acquisition Cost, Useful Life, and Acquisition Date) of an asset
determines its write down allowance for all future periods. Acquisitions made after 11 March
1992 are subject to a GBP 2000 maximum write-down per year; hence the acquisition date of
10 October 1993 means that after two years only GBP 4000 has been written down, not
2*(20000/6) had the acquisition been made (say) 1991.

In this example the context of the Write-Down Allowance is determined from the context of a
nonzero Write-Down Value Brought Forward. The item UsefulLife is a durationItemType but the
result of the expression is cast to the same type and unit as AcquisitionCost.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 14 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Formulas:

item test expression type matching
WriteD
ownAll
owance

($AcquisitionDate lt
1992-03-11) and

($WDVBroughtForward
gt 0)

$AcquisitionCost div
fn:get-years-from-
yearMonthDuration
($UsefulLife)

INF p-equal, c-equal;
Result context is that of a
nonzero WDVBroughtForward
whose period is greater
than or equal to the input
facts’ end date.

WriteD
ownAll
owance

($AcquisitionDate ge
1992-03-11) and

($WDVBroughtForward
gt 0)

fn:min(2000,
$AcquisitionCost div
fn:get-years-from-
yearMonthDuration
($UsefulLife))

INF p-equal, c-equal;
Result context is that of a
nonzero WDVBroughtForward
whose period is greater
than or equal to the input
facts’ end date.

Facts:

@id item @contextRef @unitRef @precision [content]
f57 AutoWriteDown (tuple)
f58 AssetName c14 571XVH
f59 AcquisitionDate c14 1993-10-10
f60 AcquisitionCost c14 gbp INF 20000
f61 UsefulLife c14 6
f62 WDVBroughtForward c15 gbp INF 16000

Result:

@id item @contextRef @unitRef @precision [content]
f63 WriteDownAllowance c15 gbp INF 2000

Although the formula requirements in this document do not presume the Financial Reporting
Taxonomies Architecture [FRTA], nevertheless Section 2.6 of FRTA does suggest that all facts
in a tuple instance will be c-equal. Hence this example encloses facts f58 through f62 within a
single tuple (f57) even though they have different contexts, which may not occur often.

2.18 Formula matches facts in different segments
A fixed asset breakdown between an entity (444) and its segments (aaa and bbb) has the
formula shown below, and the two figures 50,000 and 80,000 summing to 130,000.

The presumption of this use case is that if there is no segment element, this corresponds to the
“universal” segment, i.e., the entire entity.

Formulas:

item test expression type matching
FixedAssets $FixedAssetsaaa +

$FixedAssetsbbb
INF p-equal, u-equal;

FixedAssets(aaa) and
FixedAssets(bbb) contexts are
s-equal except for the segment
identifier (aaa and bbb,
respectively).

Facts:

@id item @contextRef @unitRef @precision [content]
f41 FixedAssets c08 usd INF 50000
f42 FixedAssets c10 usd INF 80000

Result:

@id item @contextRef @unitRef @precision [content]
f43 FixedAssets c05 usd INF 130000

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 15 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Note that the XML elements aaa and bbb, which are to be used in the input instance, must be
present in a namespace accessible to the formulas, just like the item names and other parts of
a taxonomy.

2.19 Formula matches facts in different scenarios
The Earnings of an entity are reported as actual and budgeted in different scenarios, and in yet a
third scenario the variance figure is to be computed from them.

There is no presumption in this use case is that if there is no scenario element that it means
some kind of “universal” scenario; rather, scenario is simply unspecified.

Formulas:

item test expression type matching
Earnings(variance) $EarningsActual –

$EarningsBudgeted
INF p-equal, u-equal;

Earnings(actual),
Earnings(variance) and
Earnings(budgeted)
contexts are s-equal
except for the scenario
identifier.

Facts:

@id item @contextRef @unitRef @precision [content]
f44 Earnings c11 usd INF 12000
f45 Earnings c12 usd INF 14000

Result:

@id item @contextRef @unitRef @precision [content]
f46 Earnings c13 usd INF -2000

Note that the XML elements actual, budgeted and variance, which are to be used in the input
instance, must be present in a namespace accessible to the formulas, just like the item names
and other parts of a taxonomy.

2.20 Formula produces a default fact in the absence of a matching fact
When Current Assets are known in a given context but Fixed Assets are not, a formula author
may want to assert a default value (zero) for the item FixedAssets.

Formulas:

item test expression type matching
FixedAssets $CurrentAssets

and
fn:not($FixedAs

sets)

0 INF p-equal, u-equal and c-equal;

Facts:

@id item @contextRef @unitRef @precision [content]
f33 CurrentAssets c03 usd INF 8000

Result:

@id item @contextRef @unitRef @precision [content]
f43 FixedAssets c03 usd INF 0

The conditions expressed in this formula would be evaluated sequentially in the sense that the
formula only applies in a context where CurrentAssets is already bound. The function fn:not is

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 16 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

used as the predicate "unbound”, in effect assuming that “unbound” variables are initially
bound to the empty sequence until bound to something else by the formula processor".

Note also that fact f43 will appear in the output, not the input, so that any formulas that
required input facts for CurrentAssets and FixedAssets in c-equal contexts would require
additional formula processor iterations, as in use case 2.10 above.

2.21 Formula assumes default values in the absence of matching facts
When values are not known in a given context, a formula author may assume a default value
(zero) for items, in this example, default values of zero for CurrentAssets and FixedAssets.

Formulas:

item test expression type matching

Assets $CurrentAssets + $FixedAssets INF

p-equal, c-equal and u-equal;
If CurrentAssets unbound then
CurrentAssets = 0;
If FixedAssets unbound then
FixedAssets = 0;
If both are unbound the
formula produces no result.

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c03 usd INF 35000
f77 CurrentAssets c02 gbp INF 2000
f65 FixedAssets c16 gbp INF 5000

Result:

@id item @contextRef @unitRef Precision [content]
f13 Assets c03 usd INF 43000
f64 Assets c02 gbp INF 2000
f66 Assets c16 gbp INF 5000

This set of facts covers each of the three possible binding cases in the formula.

2.22 Formulas ignore Nil facts by default but MAY bind them
Formula authors must have the choice whether or not to bind expressions with nil facts. At
least for the purpose of describing formulas in the use cases we assume that the default is
that nil facts may not be bound, and so nothing appears in the “test” column.

Formulas:

item test expression type matching
Assets $CurrentAssets + $FixedAssets INF p-equal, c-equal and u-equal.
Rating element(my:PE,

xbrli:decimalItemType
nillable)

if ($PE[@xsi:nil = “true”])
then 0
else if ($PE lt 5) then 1
else if ($PE lt 10) then 2
else 3

INF

Facts:

@id item @contextRef @unitRef Precision [content]
f68 CurrentAssets c03 usd INF (xsi:nil)
f35 FixedAssets c03 usd INF 35000
f70 PE c02 pure INF (xsi:nil)

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 17 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Result:

@id item @contextRef @unitRef Precision [content]
f71 Rating c02 pure INF 0

The Assets rule should produce no results. Furthermore, the formula had instead assigned a
default value of zero to CurrentAssets then it should behave the same as use case 2.21 above.
This suggests that use case 2.21 above represents a somewhat more robust treatment than
use case 2.20 above, which would involve creating a new fact that would then be a duplicate
{4.10} of the nil item.

The Rating rule should produce one fact as output.

2.23 Expression evaluation exceptions MAY be caught to produce a result
The expression language must support a try/catch or other exception handling mechanism and
the formula allowed to produce a result. The following is only an example result and is not
meant to be normative for all formulas.

Formulas:

item test expression matching
EPS Try ($Earnings div $AvgShares)

Catch Exception
Return <EPS xsi:nil="true"/>

p-equal, c-equal.

Facts:

@id item @contextRef @unitRef @precision [content]
f36 Earnings c01 usd INF 11000
f72 AvgShares c01 shs INF 0

Result:

@id item @contextRef @unitRef @precision [content]
f73 EPS c01 usdsh INF (xsi:nil)

Note that the units, context and precision of the result remain the same as if the calculation
had not thrown an exception.

2.24 Formula does not bind duplicate facts
In XBRL 2.1 {5.2.5.2} calculations are not performed when there are duplicate facts (“A
calculation binds for a summation item if it has no duplicates in the XBRL instance...”) or if the
facts have nil values (“Items with nil values do not participate in calculation bindings”). The
same approach applies consistently in formulas.

Formulas:

item test expression type matching
Assets $CurrentAssets + $FixedAssets INF p-equal, c-equal and u-equal.

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f69 CurrentAssets c03 usd INF 10000
f35 FixedAssets c03 usd INF 35000

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 18 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Result:

@id item @contextRef @unitRef Precision [content]

The formula produces no results because f33 and f69 satisfy the XBRL 2.1 “duplicates”
predicate. Furthermore, this case is distinct from the absence of CurrentAssets and therefore a
formula specifying a default value (use case 2.21 above) should not apply.

2.25 Formula uses a locally defined symbolic constant
In this formula, lowerTolerance and upperTolerance are constants bound to “-500” and “500”
respectively.

Formulas:

item test expression type matching
AssetsOkay ($lowerTolerance lt

($Assets - ($CurrentAssets +
$FixedAssets))

and
(($Assets – ($CurrentAssets +

$FixedAssets)
lt $upperTolerance)

 p-equal,
u-equal and
c-equal;

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c03 usd INF 35000
f13 Assets c03 usd INF 44000

Result:

@id item @contextRef [content]
f48 AssetsOkay c03 false

2.26 Formula uses a globally defined symbolic constant.
Here, tolerance is bound to “500” globally and so has the identical value in two different
formulas, one for testing the upper bound (UB) and one for the lower bound (LB).

Formulas:

item test expression type matching
AssetsUB ($Assets - ($CurrentAssets +

$FixedAssets))
lt $tolerance

Boolean p-equal,
u-equal and
c-equal;

AssetsLB $tolerance lt
($Assets - ($CurrentAssets +

$FixedAssets))

Boolean p-equal,
u-equal and
c-equal;

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c03 usd INF 35000
f13 Assets c03 usd INF 44000

Result:

@id item @contextRef [content]
f49 AssetsUB c03 false
f50 AssetsLB c03 true

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 19 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

2.27 Formula uses a globally defined function
In this formula, there is a reference to an externally defined function:

declare function my:withinTolerance($x as xdt:anyAtomicType, $y as xdt:anyAtomicType)
as xdt:boolean* { fn:abs($x - $y) lt 500 }

Formulas:

item test expression type matching
AssetsOkay my:withinTolerance

 ($Assets,($CurrentAssets +
$FixedAssets))

Boolean p-equal,
u-equal and
c-equal;

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c03 usd INF 35000
f13 Assets c03 usd INF 44000

Result:

@id item @contextRef [content]
f48 AssetsOkay c03 false

2.28 Different formulas bind the same name to different functions
In two different formulas, there are references to externally defined functions that apply in
different rules within the same set. The rules are not distinguished by an arithmetic test but
rather by an indicator such as xlink:role as in use cases 2.11 and Error! Reference source
not found..

scope function
Taxation Enforcement

declare function tax:withinTolerance($x as
xdt:anyAtomicType, $y as xdt:anyAtomicType) as
xdt:boolean* { fn:abs($x - $y) lt 500 }

Securities Enforcement declare function sec:withinTolerance($x as

xdt:anyAtomicType, $y as xdt:anyAtomicType) as
xdt:boolean* { fn:abs($x - $y) lt 5000000 }

Formulas:

item test expression type matching
AssetsOkay $Enforcement

eq
“Securities
Enforcement”

tax:withinTolerance
($Assets,($CurrentAssets
+ $FixedAssets))

Boolean p-equal,
u-equal and
c-equal;

EarningsOkay $Enforcement
eq “Taxation
Enforcement”

sec:withinTolerance
($Equity,$EquityPrev +

$Earnings)

Boolean p-equal, u-equal;
“EquityPrev” refers to
a context in the year
previous to that of
“Equity”.

The duration-type
period of “Earnings”
must begin at the
instant represented by
“EquityPrev”.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 20 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c03 usd INF 35000
f13 Assets c03 usd INF 44000
f03 Equity c02 usd INF 17000
f09 Earnings c01 usd INF 9000
f11 Equity c03 usd INF 27000

Result:

@id item @contextRef [content]
f48 AssetsOkay c03 True
f74 EquityOkay c03 False

Both computations have 1000-dollar errors but only one of them results in a false value.

2.29 Formula produces a fact that is a diagnostic message
Instead of producing only a Boolean value as in 2.25 through 2.29 above, a formula can
produce a more detailed warning or explanation of a problem. In this example the formula
produces the simplistic warning element

<AssetsMessage contextRef='c03'>Assets of 44000 are outside the range (-500,500) compared to 35000
+ 44000</AssetsMessage>

Formulas:

item test expression type matching
AssetsMessage fn:not

($lowerTolerance lt
($Assets -

($CurrentAssets +
$FixedAssets))

and
(($Assets –

($CurrentAssets +
$FixedAssets)

lt $upperTolerance)

fn:concat("Assets of
",$Assets," are outside the
range (",$lowerTolerance,",
",$upperTolerance,")
compared to
",$CurrentAssets," +
",$FixedAssets")

 p-equal,
u-equal and
c-equal;

Facts:

@id item @contextRef @unitRef Precision [content]
f33 CurrentAssets c03 usd INF 8000
f35 FixedAssets c03 usd INF 35000
f13 Assets c03 usd INF 44000

Result:

@id item @contextRef [content]

f48 AssetsMessage c03 "Assets of 44000 are outside the range (-500,500)
compared to 35000 + 44000”

2.30 Expression evaluation requires all facts to be bound
Although in principle, expressions such as or(x,y,z) could be evaluated left-to-right and with
x="true", neither y nor z would need to be bound, formula processing does not support this.

Formulas:

item test expression type matching
AssetsOkay $AssetsUB and $AssetsLB Boolean p-equal, c-equal.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 21 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Facts:

@id item @contextRef @unitRef @precision [content]
f49 AssetsUB c03 false

Result:

@id item @contextRef @unitRef @precision [content]

In this example, even though AssetsLB is not strictly needed to evaluate the expression, the
output still should not contain the result that AssetsOkay is false.

2.31 Formula produces a tuple.
One example of the need to produce tuples as the output of formulas is when converting an
instance using one taxonomy’s representation of some information, into the same information
as represented in another taxonomy. In this example we extract information from an instance
whose taxonomy includes every asset class explicitly, and produce an instance whose
taxonomy treats all asset classes as tuples distinguished by an IntangibleAssetClass child
element; for example, for every occurrence of an item (IntangiblesPatents), i.e.,

<IntangibleGrossPatents
 contextRef='c03' unitRef='usd' decimals='0'>10742</IntangibleGrossPatents>

Create a corresponding tuple:

<IntangibleAsset>
<IntangiblesClass contextRef='c03'>patent</IntangiblesClass>
<IntangiblesGross
 contextRef='c03' unitRef='usd' decimals='0'>10742</IntangiblesGross>

</IntangibleAsset>

Formulas:

tuple test expression type matching
"<IntangibleAsset>
<IntangiblesClass

contextRef='{@contextRef}'>
patent </IntangiblesClass>
<IntangiblesGross

contextRef='{@contextRef}'
unitRef='{@unitRef}'
decimals='{@decimals}'> {.}
</IntangiblesGross>

</IntangibleAsset>"

 $IntangiblesPatents

Tuple p-equal,
u-equal and
c-equal;

The current
node “.” Is
bound to the
fact (not its
value).

Facts:

@id item @contextRef @unitRef decimals [content]
f51 IntangiblesPatents c03 usd 0 10742

Result:

@id item @contextRef @unitRef decimals [content]
f52 IntangiblesClass c03 Patent
f53 IntangiblesGross c03 usd 0 10742
f54 IntangibleAssets (tuple)

2.32 Formula merges items into an existing tuple.
Continuing use case 2.30 above, the input and output taxonomies can differ by having several
facts that need to be merged into an output tuple. Without the ability to merge into existing
output tuples, a combinatorial number of formulas would be needed to capture each possible
combination of facts available. For example, the additional facts appear in the input:

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 22 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

<IntangibleReservePatents
 contextRef='c03' unitRef='usd' decimals='0'>3977</IntangiblesReservePatents>
<IntangibleNetPatents
 contextRef='c03' unitRef='usd' decimals='0'>6765</IntangibleNetPatents>

This should yield, along with the inputs of use case 2.30 above, a single tuple:

<IntangibleAsset>
<IntangiblesClass contextRef='c03'>patent</IntangiblesClass>
<IntangiblesGross
 contextRef='c03' unitRef='usd' decimals='0'>10742</IntangiblesGross>
<IntangiblesReserve
 contextRef='c03' unitRef='usd' decimals='0'>3977</IntangiblesReserve>
<IntangiblesNet
 contextRef='c03' unitRef='usd' decimals='0'>6765</IntangiblesNet>

</IntangibleAsset>

Formulas:

tuple test expression type matching
"<IntangibleAsset>
<IntangiblesClass

contextRef='{@contextRef}'>
patent </IntangiblesClass>
<IntangiblesReserve

contextRef='{@contextRef}'
unitRef='{@unitRef}'
decimals='{@decimals}'> {.}
</IntangiblesReserve>

</IntangibleAsset>"

 $IntangibleReserveP
atents

Merge the output
tuple with any
tuple already
present having a
duplicate
IntangiblesClass
element.

Tuple p-equal,
u-equal and
c-equal;

The current
node “.” Is
bound to the
fact (not its
value).

"<IntangibleAsset>
<IntangiblesClass

contextRef='{@contextRef}'>
patent </IntangiblesClass>
<IntangiblesNet

contextRef='{@contextRef}'
unitRef='{@unitRef}'
decimals='{@decimals}'> {.}
</IntangiblesNet>

</IntangibleAsset>"

 $IntangibleNetPaten
ts

Merge the output
tuple with any
tuple already
present having a
duplicate
IntangiblesClass
element.

Tuple p-equal,
u-equal and
c-equal;

The current
node “.” Is
bound to the
fact (not its
value).

Facts:

@id item @contextRef @unitRef decimals [content]
f51 IntangiblesGrossPatents c03 usd 0 10742
f52 IntangiblesReservePatents c03 usd 0 3977
f53 IntangiblesNetPatents c03 usd 0 6765

Result:

@id item @contextRef @unitRef decimals [content]
f54 IntangiblesClass c03 patent
f55 IntangiblesGross c03 usd 0 10742
f56 IntangiblesReserve c03 usd 0 3977
f57 IntangiblesNet c03 usd 0 6765
f58 IntangibleAssets (tuple)

Merging a tuple into a null tuple yields the tuple itself. Formula processors may choose to
implement tuple merging in a post-processing step. This use case justifies result requirement
7.12; merging into an output tuple does not by itself determine location in the output.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 23 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

2.33 Formula matches facts across segments of a common entity
Two fixed asset breakdowns between:

• an entity (444);

• its geographic segments (<geo>ON</geo> and <geo>MI</geo>); and

• line of business segments (<lob>paper</lob> and <lob>plastic</lob>)

has the formula shown below, with the two sets of figures 50,000 and 80,000 and 40,000 and
90,000 separately summing to 130,000.

Formulas:

item condition expression type matching
FixedAssets sum of FixedAssets* INF p-equal, u-equal;

FixedAssets* contexts have a
common entity, common segment
element and distinct segment
element contents,
FixedAssets* contexts have
s-equal scenarios;
Result context entity has no
segment element.

Facts:

@id item @contextRef @unitRef @precision [content]
f41 FixedAssets c08 usd INF 50000
f42 FixedAssets c10 usd INF 80000
f75 FixedAssets c18 usd INF 40000
f76 FixedAssets c19 usd INF 90000

Result:

@id item @contextRef @unitRef @precision [content]
f43 FixedAssets c05 usd INF 130000
f77 FixedAssets c05 usd INF 130000

By contrast with use case 2.18 above, “Formula matches facts in different segments
 in this use case the formula is not limited to known segment names. Rather, the formula
match criteria MUST be written in conjunction with a design of segment child elements that
ensures distinct child elements of segment are treated as orthogonal and distinct element
contents are comprehensive and non-overlapping.

3 Linkbase-related requirements
The requirements here specify the linkbase features that formulas must support in order to
integrate fully with the rest of XBRL 2.1.

3.1 A discoverable taxonomy set MAY include formulas
It MUST be possible to define a set of formulas in such a way that it can be part of one or
more discoverable taxonomy sets {1.4}.

3.2 Formulas MAY require components of a DTS
Formulas refer to items and tuples defined in taxonomies {3}. Therefore it MUST be possible
for a set of formulas to rely upon the presences of specific taxonomy schemas and linkbases in
its processing environment.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 24 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

It is not sufficient to rely on the schemaRef and linkbaseRef elements of an instance because the
formulas may be computing results that are elements from an entirely different taxonomy
schema. Example 4 shows a formula linkbase that has inputs from the taxonomy schema
MDRM.xsd but computes results that are items in Form031results.xsd. An instance with a schemaRef
only to MDRM.xsd is not sufficient for execution of the formulas. In effect the execution of
formulas requires a DTS that is the union of its own DTS and the DTS of the instance in
question.

Example 4. Relationship of an instance DTS and DTS of a set of formulas

3.3 Formulas MAY be partitioned into sets
A formula is a relationship among two or more items and so a set of formulas MUST use the
same xlink:role attribute as used in XBRL 2.1 to indicate which relationships participate in the
same networks of relationships based on the value of the role {5.2}. See use case 2.11
above.

3.4 Formulas MAY be prohibited
An extension taxonomy MAY prohibit a formula in a base taxonomy {3.5.3.9.7.5}. See use
case 2.10 above. The requirement does imply that formulas require a base/extension scheme
like that used in taxonomies.

In order for one formula to prohibit another they must be identical, not just s-equal.
Assuming that a formula set is implemented as a linkbase, a prohibiting arc MUST connect the
same XML fragments as the original arc, and both the original and the prohibiting arc MAY
connect multiple resources (formulas, variables, constants) by making the ID attribute
required.

3.5 Documentation of a formula MAY be included
Human-readable documentation that explains meaning of a formula in multiple languages MAY
be included in each formula or set of formulas.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 25 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

3.6 The representation of formulas SHOULD NOT require redundancy
This is a general principle applicable to most if not all representations. By analogy with the
unit element in XBRL and the unitRef attribute, where a set of formulas is likely to share
common information, the specification will use syntax that allows it to be specified just once
and referred to in many formulas.

3.7 Formulas may only appear in linkbases associated with a taxonomy,
consistent with the treatment of calculations, and not the instance.

Formulas in an instance are believed to irrevocably render XBRL instances useless from an
archival standpoint because of differences in the results that different processors would derive
results. The treatment of formulas for archiving MUST be the same as for calculation arcs.

4 Processing-related Requirements
The requirements here describe the processing semantics of formulas relative to input and
output XBRL elements.

4.1 Application of a set of formulas to an XBRL-valid instance MUST
either fail or result in another XBRL-valid instance.

This requirement guarantees that the output of a formula processor is a valid XBRL instance.
Non-local properties of XBRL validity that would apply to the output instance—such as the
testing of the requires-element constraints {5.2.6.2.4}—may be difficult to guarantee on a local,
incremental basis, so that in practice a formula processor would almost certainly require an
XBRL 2.1 validity checker.

One and only one processing iteration shall be performed in satisfying this requirement.

4.2 The result of applying formulas to an instance that is not XBRL-valid
is not defined.

Authors may write formulas in such a way as to presume an XBRL-valid instance with respect
to a known taxonomy schema.

4.3 Any number of formulas may compute the value of any item.
Authors may write formulas in such a way as to provide multiple ways to derive a given fact.
In practice authors should avoid writing formulas that bind the same set of facts to produce
the same result facts, since the result facts may be duplicates or even contradictory.

4.4 All formulas in a DTS are to be processed concurrently and without
exception in a non-deterministic order without regard to priority.

The firing order of formulas is implementation dependent. This cannot affect the semantics of
the outcome, given requirement 6.7 below, “Formulas MUST only bind facts that are explicitly
present in the input.” Formulas are to be processed one instance at a time. Processing the
instances is implementation dependent and cannot affect the semantics of the outcome.
There is no dependency between any formula and any other formula.

If formulas had priorities then they could be used to order formula application in cases where
more than one formula applies, but since all must be evaluated, and the order of output
elements is not relevant in XBRL, the XBRL semantics would not be impacted.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 26 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

5 Expression-related Requirements
The requirements here refer to the common features needed in all three of:

• expressions that may be used to bind arguments to facts;

• expressions that may form a Boolean precondition of the formula after arguments are
bound; and

• expressions that yield the result of processing a formula.

Where it is not clear from context elsewhere in the document, these are called binding
expressions, precondition expressions, and result expressions.

5.1 Expressions MAY include constants and mathematical operations.
Formulas must be able to express any constant from the value space of XML Schema primitive
data types [SCHEMA-2].

Formulas must be able to express the following operations:

• Addition and subtraction of values;

• Division and modulus of values, both integer and real;

• Multiplication of items;

• Determine maxima and minima of a sequence of values;

• The range of string matching and modification operations made possible by regular
expressions;

• All of the following relational operations, =, <, >, <=, >=, != on numeric items and
=, != on non-numeric items.

See use cases 2.1 through 2.27 above.

5.2 Expressions MAY include conditional expressions.
Formulas must be able to express the following operations:

• If, Then, Else

• Elseif

• Switch / Case

See use case 2.16 above.

5.3 Expressions MAY determine the minimum and maximum period that
appear among the contexts in an instance.

Expressions may determine the latest and earliest startDate, endDate and instant appearing in
the instance. This could also include the use of date expressions that include a function such
as now() which would return the current instant as an ISO 8601 string.

See use case 2.15 above.

5.4 Expressions MAY test for the presence of a fact for any item in any
context.

The presence or absence of a fact may be tested.

See use case 2.20 for an example in a conditional expression, use case 2.21 for a case in
binding expressions; use case 2.22 also indicates that Nil items may be tested for.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 27 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

WH: Need a use case for result expressions.

5.5 The behaviour of a formula processor MUST be defined in case of an
expression evaluation exception.

A formula will bind arguments to facts, and substitution of the arguments as variables in the
expression allows the expression to be evaluated. The formula specification MUST indicate, in
particular, what result if any is produced when the expression throws an exception when
evaluated. Use case 2.23 above presupposes a try/catch mechanism that allows the formula
author to control the behaviour on a case-by-case basis. This presumably though not always
will include the generation of a human-readable error message.

See use case 2.23 above which covers result expressions.

WH: Use cases for exceptions occurring in binding and condition
expressions are needed.

5.6 Constants MAY be named and defined outside a formula and
referenced in its expressions.

Sets of formulas often refer to constants which may either appear locally or may appear in
several related formulas; there MUST be a way to define a constant whose scope is an entire
set of formulas. There MUST be a means to limit the scope of such a constant, such as by
using the xlink:role attribute.

See use cases 2.25 through 2.26 above.

WH: Use cases covering binding and condition expressions are needed.

5.7 Functions MAY be named and expressions defined outside a formula
and referenced in its expressions

Any function that is not “built in” to the expression language – for example, trigonometric
functions – would either have to be defined repeatedly in every formula that needed it, or an
intermediate item defined in the taxonomy whose only role would be to hold the result of the
formula and then append that result to an instance so that its value could be bound in all
formulas that may need it. Examination of UK Inland Revenue Tax Computation use cases,
similar items on the FFIEC 031 and 041 forms, and consideration of many financial analysis
routines, reveals that the same formulas are used again and again.

See use case 2.27 above.

5.8 Functions MAY have their scope defined to apply to only a subset of
formulas in a set

There must be a way to limit the scope of such a function definition to be usable only within a
certain set of formulas, such as by using the xlink:role attribute.

See use case 2.28 above.

5.9 There MUST be only one expression language
From an initial adoption standpoint, it is not desirable to allow multiple expression languages
since that would unnecessarily increase the implementation burden on a compliant formula
processor.

Other standards (e.g., XSL and XPointer) have frameworks in which different expressions or
scripting languages may be used; new recommendations incrementally extend the set of
expressions that must be supported.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 28 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Therefore, the requirement that there must be only one expression language MAY be relaxed
in a future version of the formula specification.

5.10 The expression language MUST be recognisable to a programmer of
average skill.

A “programmer of average skill” means a person familiar with infix and functional notations
able to write spreadsheet formulas, SQL queries, or expressions in a 3GL or 4GL programming
language.

This requirement will be satisfied if the expression language is a subset of a widely used
language such as ECMAScript or XPATH 1.0. Expression syntaxes ruled out by this
requirement include those used by APL, FORTH, LISP, PROLOG, etc.

5.11 The expression language MUST include operators that can select any
node in the instance accessible from bound facts.

Fact-binding expressions, conditional expressions and result expressions to operate (for
example) on the units of measure, the contexts, and other parts of the input instance.

It is believed to be more difficult for the specification and therefore for an implementation to
prevent this accessibility than it is to allow it.

6 Fact-binding Requirements
The requirements here refer to the features needed to bind facts to the arguments for the
formula as they appear in the condition and result expressions.

6.1 Formulas MAY filter the input facts to which they apply according to
relationships between facts in one or more contexts.

The input facts of a formula may have different contexts. Contexts are related to one another
using the following orderings:

• The relationship “after” that partially orders periods;

• The subset relationship “during” between periods;

• The subset relationship implied between an entity and its segments {4.7.3};

• The subset relationship implied between an empty (universal) scenario and a scenario
with additional discriminators {4.7.4}.

See use cases 2.1 through 2.4, 2.13, and 2.14 through 2.18, and 2.22 through 2.30. Note
that contexts need not be c-equal: See use case 2.1 above.

6.2 Formulas MAY restrict the facts that they bind based on their context.
See use cases 2.1 through 2.4. This requirement also implies that the expression language
SHOULD provide a native library of date manipulation functions such as those specified for
XQuery and XPath [XQPFO].

6.3 Formulas MAY restrict the facts that they bind based on their unit.
See use case 2.14.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 29 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

6.4 Formulas MAY restrict the facts that they bind based on their
precision or decimals attribute.

The condition on the facts may allow precision, decimals, or both, and comparative operators
on their values.

WH: Need use cases for this.

6.5 Formulas MAY filter input facts depending on their surrounding tuple
structure.

Formulas MUST be able to use predicates that use paths with the parent-child and other
XPATH axes in order to filter input facts. These paths MAY refer to facts already bound.

WH: Need a use case for this.

6.6 Formulas MAY filter input facts based on the filters applied in that
formula to other facts.

For example, an input may be filtered according to a criterion such as “the same context as
that other argument, except one quarter earlier.”

See use cases 2.4 and 2.17.

6.7 Formulas MUST only bind facts that are explicitly present in the input.
There is no requirement that formulas automatically match to facts derived from previous
formulas matched and evaluated.

Consequences of this are shown in use case 2.20.

6.8 Formulas MAY bind facts that are present in more than one XBRL
instance within a single root XML element.

The motivation for this is that some formulas will require multiple XBRL instances; for example,
in use case 2.20 the implication is that a given instance may require more than one formula
processing iteration. Because all identifiers—particularly the id attributes of unit and context
elements—cannot be duplicated in an XML element, simple concatenation within a parent
element may not be significantly easier than actually merging the two instances properly to
create a single XBRL-valid instance. Nevertheless the requirement remains.

See use case 2.20.

6.9 Multiple applications of a formula to a set of facts, with multiple
combinations of bindings of arguments to facts, may produce multiple
results.

A formula MAY match the same facts to different arguments and apply multiple times.

See use cases 2.13 and 2.14.

WH: A better use case would be to have facts for both quarterly and
annual periods along with a single value for an instant.

6.10 The outcome of a formula match MUST be defined in situations in
which duplicates appear in the input instance.

When duplicate facts appear in an instance, a single formula could:

(a) repeatedly bind different duplicate facts and re-evaluate its expression repeatedly,

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 30 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

(b) follow the approach used in the calculation linkbase and derive no facts, or

(c) take some other approach.

The specification MUST indicate what facts if any are derived in this situation. The
specification MUST use whichever approach is consistent with interpretation of XBRL 2.1
{5.2.5.2}.

See use case 2.24, “Formula does not bind duplicate facts”.

6.11 Formulas MAY specify preconditions on expressions based on
context and fact value

For example, an expression may apply only when the value of a certain item is nonzero in the
bound context. The requirement is that there be a way to “abort” the application of a formula
after all inputs are bound to facts, but before its expression is evaluated.

This does not require that the matching and binding criteria of any argument be able to
reference the value of any other bound argument. For example, a formula that binds
argument “S” to the “SignatureDate” of a financial statement does not need to be able to use
the date “S” to find the Revenue value as of date “S”. In general, computed offsets (e.g., the
binding of one argument determines which of many different time periods the other
arguments are bound in) do not have to be supported.

See use case 2.12.

6.12 Formula arguments MUST bind to facts, not to their contents
This requirement is a logical consequence of other requirements such as 6.5 above, “Formulas
MAY filter input facts depending on their surrounding tuple structure.”

6.13 Constants MAY be facts
This requirement is a logical consequence of 6.12 above. Use cases 2.25 and 2.26 above
presume that constants consist only of numbers, strings and other primitive data types,
however, if formula arguments are bound to facts then constants must also be able to
represent facts having a precision, context, and units.

6.14 A variable number of facts may be bound
Arguments bound in a formula may be bound to a sequence of facts for execution. Formulas
such as “the sum of all revenues for years before 2001” and “the sum of values of the children
of the item” are allowed. This will require operations on vectors and matrices spanning any
number of contexts, which in turn requires a definition of the “best” or “maximal” match in
order to avoid a combinatorial explosion. For example, if argument X is defined in six periods,
then the “moving average of X” must be defined with respect to a fixed number of periods
anyway (2 periods? 3 periods?), and this can adequately be expressed using formulas with a
fixed number of input arguments. By contrast, if X is “the sum of X for all child entities,” all
could mean “all child entities for which X is known in each known period” or “all child entities
for which X is known in all periods.”

See use case 2.33 above, “Formula matches facts across segments of a common entity”.

7 Result Expression Requirements
Unless otherwise noted, the “expressions” referred to here refer to all three of:

• expressions that are used to bind arguments;

• expressions that form the Boolean precondition of the formula; and

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 31 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

• the expression that yields the result of the formula.

7.1 If the application of a formula results in an XBRL fact then the formula
MUST fully determine the context of that fact

The context is determined on the basis of the formula itself, the information in the contexts of
the facts being drawn upon by the formula, and the facts bound to variables in the expression
when the formula matches.

See all use cases.

7.2 If the application of a formula results in a numeric XBRL fact, then the
formula processor MUST also result in a unit reference and a
precision or decimals attribute

The unit reference and the precision and decimals attributes are determined on the basis of the
formula itself and the information in the facts bound to variables in the expression when it
applies {4.6}. Furthermore, the formula author MUST be able to specify the unit, precision,
and decimals attributes in addition to the requirement is that the formula processor be able to
determine them on its own. If the result item is a numeric type then the formula MUST
specify the result units; there is no default.

See use cases 2.5 through 2.9.

7.3 Formulas MAY include expressions to construct a derived fact or
tuple

Each formula MAY specify how new elements are to be constructed as a consequence of the
presence and content of other facts in an instance. All parts of the result fact MUST be
specifiable by the formula, including element names, content of each element, context, and in
the case of numeric facts, the unit and either decimals or precision attributes.

7.4 Formulas MAY include expressions to construct a derived context
See use case 2.2 above.

7.5 Formulas MAY include expressions to construct a derived unit
See use case 2.5 above.

7.6 Formulas MAY create the content of a new fact or tuple from facts in
different contexts

For example, a formula that derives the “cash” at end of period as “cash” (at the beginning of
period) + collections – disbursements” may calculate the value as of the end of 2003 from the
value at the beginning of 2003 and values during the period 2003-01-01 to 2003-12-31, which
are two distinct contexts also distinct from the context of the ending value.

The result of a single application of a formula to a set of facts may be a single fact or a tuple
populated by several facts.

7.7 A formula MUST be able to create contexts, units, and facts that were
not present in the input document

Output facts may contain elements from any taxonomy namespace present in the input
document, and may produce new context and unit elements.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 32 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Formulas do not have to provide a way to synthesize namespaces, elements or attributes that
are not already present in the instance being processed, the DTS of the instance, or the DTS
of the formula set being processed.

Formulas do not need to be able to produce XBRL footnoteLink, footnoteArc, footnote, loc,
schemaRef, roleRef, or arcRoleRef elements.

When the result of a formula contains a numeric item type, the unit element to which its
unitRef attribute refers does not have to have an identifier unique among all unit elements in
the output; the identifier of the unit element is unconstrained so long as the result output is
XBRL-valid.

When the result of a formula contains a fact, the context element to which its contextRef
element refers does not have to have an identifier unique among all context elements in the
output; the identifier of the context element is unconstrained so long as the result output is
XBRL-valid.

7.8 Formulas MAY include expressions to limit the precision of result
facts

The default precision attribute of a numeric result is the maximum allowed by the input facts
and the expression, but is truncated to 18 if a repeating decimal representation would result.

See use case 2.6.

All numeric facts are asserted with a precision attribute unless decimals is specified.

7.9 Formulas MAY include expressions to limit the decimals of result
facts

The default decimals attribute of the result is that which would result after conversion of all
inputs to their equivalent precision attribute and requirement 7.8 adhered to and then
converted back to a decimals attribute.

See use case 2.9.

7.10 Result expressions may return Nil facts
That is, the result element would have xsi:nil="true".

WH: Need a use case.

7.11 Result expressions MAY return tuples
Requirements 7.3 and 7.5 above, in which a tuple is a possible expression result, imply that
this requirement. See use cases 2.31 and 2.32 above.

7.12 Result expressions MAY indicate that a result element is to be
inserted into last inserted tuple

Requirement 7.11 above implies that additional formulas may create items or other tuples that
are meant to be children of a previously output tuple. The default behaviour is to append the
result to the xbrl root element.

8 Approval requirements
The requirements here apply generally to the formula specification and the process for its
approval.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 33 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

8.1 The formula specification MUST depend only on finalised
specifications with broad implementation experience

A working definition of “broad” implementation experience is “at least as many commercial
implementations as XBRL 2.1 itself.” The expression syntax used within the formula
specification is covered by this requirement.

Figure 5. Expression requirements vs. W3C specifications.
Requirement [XPATH] [XPATH2] [XQuery]

5.2, Expressions MAY include conditional
expressions.

No Yes Yes

5.7. Functions MAY be named and expressions
defined outside a formula and referenced in its
expressions

No No Yes

Use case 2.23 “Expression evaluation exceptions MAY
be caught to produce a result” Requirement 5.5 says
only “The behaviour of a formula processor MUST be
defined in case of an expression evaluation
exception.”

No No No

6.2. Formulas MAY restrict the facts that they bind
based on their context.

No Yes Yes

WH: It remains issue 34 whether XPATH 2.0 will be a finalised
specification in an appropriate time frame.

8.2 Two formula processing implementations MUST produce semantically
equivalent results on a conformance suite

A conformance suite will consist of sets of inputs and their expected outputs according to the
formula specification. The conformance suite will exercise each feature of the formula
specification. The ability to process these inputs and produce semantically equivalent outputs
will be taken as evidence of a compliant formula processing implementation. Evidence of two
separate and compliant formula processing implementations both having non-discriminatory
licensing terms MUST be provided before the specification can be issued as a recommendation.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 34 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Figure 6. XBRL formulas conformance testing

8.3 A Formula specification MUST NOT redefine any term defined in any
specification upon which it depends

In particular, the term “duplicate” MUST retain its XBRL 2.1 meaning {4.1}.

9 Proposed requirements
Proposed requirements and corresponding use cases that are not part of the official set of
requirements and that have not been conclusively rejected are documented here. The “?”
indicates that the use case or requirement has been proposed.

9.1 ? A formula binds to the PTVI of an instance, not to the instance
Beneficial consequences of processing the PTVI rather than the instance itself include:

• Formula expressions are NOT required to draw inferences from the existence of
calculation or essence-alias arcs discoverable from the instance.

• Fact-binding criteria are NOT required to infer precision or decimals attributes.

• A formula processor would have to be a superset of an XBRL processor as defined in
the XBRL 2.1 Conformance Suite [CONF].

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 35 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Issues include:

• The PTVI is NOT formally defined in the XBRL 2.1 Recommendation.

• The PTVI of an instance tends to be much larger in byte count than the instance itself.

• This requirement would require modification of requirement 6.7 above, “Formulas
MUST only bind facts that are explicitly present in the input.”

• The PTVI must be defined so as to be compatible with proposed requirement 6.8
above, “Formulas MAY bind facts that are present in more than one XBRL instance
within a single root XML element.”

WH: This remains a proposed requirement because the PTVI
specification is still a work in progress.

10 Rejected requirements and use cases.
Some previously proposed use cases and corresponding requirements are documented here.
The “*” prefix indicates that the requirement is rejected.

10.1 * Formulas may bind facts in multiple XML instances
This would add generalised addressing of absolute and relative URLs to the fact binding
expressions. Cases include

• http://data.example.com/2003/10K.xbrl -- refers to a specific document

• http://data.example.com/2003/ -- refers to a set of documents?

• http://data.example.com CurrentAssets – refers to an element somewhere on the web
site?

There is no use case included for this.

10.2 * Formulas form arcs from their input items to outputs and directed
cycles in these arcs are prohibited.

Formulas already do have a certain kind of directed cycle, as in use case 2.4 “Formula uses
items in contexts that match period endpoints” where there is a directed cycle from the Equity
item to itself except for the fact that the period of the input and output do not overlap. The
static analysis to detect cycles is sufficiently complex that it does not seem worthwhile to
mandate. Moreover, it is believed that formulas such as z = f(z) + c is a legitimate use case
even though solving them may require iteration or other techniques.

10.3 * The maximum number of facts bound in a formula is fixed
The number of facts to be bound in a given formula is always fixed. Arguments bound in a
formula may not be bound to a sequence of facts for execution. Formulas such as “the sum of
all revenues for years before 2001” and “the sum of values of the children of the item” are not
required. This would essentially require operations on vectors and matrices spanning any
number of contexts, which in turn requires a definition of the “best” or “maximal” match in
order to avoid a combinatorial explosion. For example, if argument X is defined in six periods,
then the “moving average of X” must be defined with respect to a fixed number of periods
anyway (2 periods? 3 periods?), and this can adequately be expressed using formulas with a
fixed number of input arguments. By contrast, if X is “the sum of X for all child entities,” all
could mean “all child entities for which X is known in each known period” or “all child entities
for which X is known in all periods.”

See the contradictory use case 2.33 above, “Formula matches facts across segments of a
common entity”.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 36 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

10.4 * Application of a set of formulas to an XBRL-valid instance MUST
either fail or result in an XML instance

This would have replaced and relaxed requirement 4.1 above, so that the output could be
either XBRL, XML or any combination thereof.

10.5 * Conforming processors MUST allow a user agent to copy the input
instance to the output, and the processing model MUST state that it is
the default

This would have required that the output of a formula processor to be either an empty
instance or a copy of the input instance, and force the processing model to allow the choice to
be overridden. This was removed from the requirements since it has no impact on the syntax
of formulas.

10.6 * Formulas MAY specify one or more alternative items or tuples as the
possible result of expression evaluation

The results from a formula may select a subset of a finite set of possible element names
(items) that depend on the input facts. This is requirement is supported by general
requirement 3.6, “The representation of formulas SHOULD NOT require redundancy”. An
example use case would be the formula “If revenue is less than expense then loss is expense
minus revenue, otherwise profit is revenue minus expense”. Another use case would be to
combine use cases 2.25 and 2.29, with the formula computing either or both of a Boolean flag
and a diagnostic error message. In both use cases, to achieve the same effect using two
separate formulas having the same variable bindings and tests would be redundant. This
requirement is not meant to imply that the element name(s) in the output might be
synthesised via an expression; the formula would still need to explicitly list the possible
alternative items, with the expression selecting among them. (Note that the fact that FRTA
1.0 and rule 2.1.1 – supported by FRTA 1.0 example 1 – would forbid the use of both profit
and loss items suggests that a better use case is needed than the first example used here – a
moot point since the requirement is rejected).

10.7 * Conforming processors MUST default the units of a result by
analysis of the input facts and expression

The units of the fact resulting from a result expression have a default which is determined by
analysis of the expression; e.g., a/b yields units(a)/units(b); a+b yields unit(a) and throws an
exception if units(a)<>units(b), etc.

A use case would be identical to 2.6 above in terms of facts and results except that the
formula itself would not specify that the output results are a currency amount per year.

10.8 Formulas MAY specify the location of their result in the output
instance

The output result is by default appended to the root xbrl element of the output, but a path
may be specified where it is to be inserted. This is a stronger version of result requirement
7.12 above.

10.9 ? Expressions may test for duplicate output facts and tuples before
asserting a result

The most general form of this requirement would mean evaluating expressions that reference
the output instance—realistically this would have to be restricted to specific circumstances
such as testing whether the fact about to be inserted is already present.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 37 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

11 Document history (non-normative)
Date Editor Remarks
2002-01-10 vun Kannon Note posted on XBRL-SpecV2 group describes the design

of the “Computational Linkbases” prototype by David vun
Kannon and Yufei Wang of KPMG.

2002-01-25 Hamscher First draft of “Augmented Computational Linkbases” which
included both requirements and an alternate design
proposal.

2002-02-18 Hamscher Edits after draft reviewed by David vun Kannon.
2002-02-20 Hamscher Draft distributed to the XBRL-SpecV2 group.
2002-02-27 Hamscher Draft with inline edits by Geoff Shuetrim published to

XBRL-SpecV2 group.
2002-07-01 Hamscher Reissued as internal working draft of a Requirements

document, with examples from Rene van Egmond added.
The notion of a “rule base” is the functional requirement
which might be satisfied by a computational linkbase with
modifications.

2002-07-03 Hamscher Issued as internal working draft to XBRL-SpecV2 group
after comments by contributors.

2002-08-31 Hamscher Incorporated comments on initial working draft. In
recognition of issues illustrated in the draft specification of
2002-08-19, some requirements were reworded, dropped,
or changed category.

2002-09-10 Hamscher Incorporated further minor comments and requested
issuance as a public working draft.

2002-09-25 Hamscher Relaxed the requirement for an open source
implementation, and relaxed the requirement with respect
to XPATH 2.0. Changed intellectual property notices to
conform to IPR policy currently pending ISC approval.
Revised target approval dates. Requested again issuance
as a public draft.

2002-09-26 Hamscher Corrections in use cases and various typos caught by
Watanabe-san. Added line numbering to facilitate
commentary.

2002-10-01 Hamscher Finalisation for public release. Removed redundant use
case 5 and renumbered the remainder.

2002-10-16 Hamscher Various errata from Hugh Wallis. Returned to previous
numbering and stabilised on UC01, UC02, etc. Reinstated
a simplified UC05.

2002-10-22 Hamscher Various marginal notes included from New York face-to-
face meeting 22 October 2002 which changed the status
of some requirements from basic to complex and vice
versa.

2003-11-14 Hamscher Updated entire document contents to conform to XBRL 2.1
syntax and style. Defined the relationship between this
new specification and XBRL 2.1. Removed the distinction
between basic and complex requirements. Restated each
requirement as a normative statement and defined
conformance with stringency similar to that of XBRL 2.1.
Included consideration of the impact of duplicates and
other XBRL 2.1 issues. Eliminated the Open Issues and
Design notes sections, folding any relevant remarks into
the explanation for each requirement. Revised use cases
to remove cases now irrelevant and added general
scenarios of use.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 38 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Date Editor Remarks
2003-12-07 Hamscher Incorporated feedback from Yuji Furusho, Geoff Shuetrim

and others.
2004-01-08 Hamscher Reworked the use cases to use a common set of concepts,

contexts, and units. Reorganised document to emphasise
concrete use cases. Broke requirements up into several
separate sections by theme. Distributed a truncated draft
for comments to the Formula subgroup.

2004-01-12 Hamscher Brought draft into alignment with issues list. Referenced
each individual requirement to a use case. Added
additional use cases but left others open for others to add.
Added sections of proposed and rejected requirements
(and use cases). Indicated in the draft where outstanding
decisions need to be made and provided notes on the
issues.

2004-01-18 Hamscher Promoted the proposed requirements for multiple formulas
per item, and globally defined functions; added several
new proposed requirements that emerged in online
discussions. Added an approval requirement that terms
must not be redefined. Added explicit requirement that
expressions may produce tuples. Made editorial change to
distinguish arguments and variables. Added use cases to
clarify the treatment of units in output expressions.
Updated target completion dates.

2004-02-02 Hamscher Added explanation of general use cases and added
proposed requirement relaxing the need for XBRL output.

2004-02-11 Hamscher Rejected the requirement that each formula binds a fixed
number of facts, replacing it with a use case involving
summation across segments and the accompanying
requirement that expressions must be able to access the
DTS of the instance that it is processing. Merged David
vun Kannon’s edits to expression syntax so as to use
XPATH 2.0 W3C Working Draft 12 November 2003 syntax,
and incorporated his observations into a table in the
“broadly implemented expression language” requirement.
Promoted the rejected requirement to have computed
item results to a proposed requirement.

2004-02-16 Hamscher Merged comments from Hugh Wallis to use s-equal
instead of “equivalent” or “same” contexts, and
typographical errors in some use cases. Reworded the
use case for formula prohibition to refer to sets of
formulas rather than taxonomies. Moved “arbitrary XML
output” from proposed to rejected. Added result
requirement that formula must indicate whether result is a
child of the xbrl element or the last tuple.

2004-03-17 Hamscher Incorporated changes to rules so as to align the treatment
of formulas from the standpoint of duplicates and
archiving with the treatment of calculation arcs under
XBRL 2.1. Edited the rule regarding prohibition.
Corrected typos found by Mark Goodhand.

2004-04-06 Hamscher Modified the segment summation use case to clarify that
the formula fact matching over segments must take into
account the meaning of the segment child elements, and
conversely that the segment child elements should be
designed so as to distinguish orthogonal segmentations.
Clarified the rule regarding input copying so as to remove
it from the realm of linkbase syntax. Promoted the

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 39 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

Date Editor Remarks
requirement for accessibility of all parts of the input
instance to a full requirement. Removed use case
involving formula sequencing using roles. Rejected
requirements concerning processing iterations, multiple
alternative item outputs, computation of output units, and
testing for duplicate outputs. Clarified that the output
instance may have duplicate contexts and units, so long
as the result is XBRL-valid.

2004-04-20 Hamscher Edit to turn Internal WD into Public WD, no other changes.

12 Intellectual Property Status (non-normative)
This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such copies
and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to XBRL International or XBRL organizations,
except as required to translate it into languages other than English. Members of XBRL
International agree to grant certain licenses under the XBRL International Intellectual Property
Policy (www.xbrl.org/legal).

This document and the information contained herein is provided on an "AS IS" basis and XBRL
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

The attention of users of this document is directed to the possibility that compliance with or
adoption of XBRL International specifications may require use of an invention covered by
patent rights. XBRL International shall not be responsible for identifying patents for which a
license may be required by any XBRL International specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention.
XBRL International specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents. XBRL
International takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Members of XBRL International agree to grant certain licenses under the XBRL
International Intellectual Property Policy (www.xbrl.org/legal).

13 References (non-normative)

[CONF] Walter Hamscher (editor).
 XBRL 2.1 Conformance Suite 1.0 Public Working Draft
 http://www.xbrl.org/

[FRTA] Walter Hamscher (editor).
 Financial Reporting Taxonomy Architecture 1.0 Candidate

Recommendation
 http://www.xbrl.org/

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 40 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

[HNC] Fair Isaac & Company, Inc.
 Blaze Advisor
 http://www.fairisaac.com

[ISO] International Standards Organisation.
 ISO 4217 Currency codes, ISO 639 Language codes, ISO 3166 Country

codes, ISO 8601 international standard numeric date and time
representations.

 http://www.iso.ch/

[ILOG] JRules
 ILOG Inc.
 http://www.ilog.com/products/rules/engines/jrules/

[HPS] Alan Newell and Herb Simon.
 Human Problem Solving, 1972.

[Processes] Walter Hamscher
 XBRL International Processes 1.0, 4 April 2002
 http://www.xbrl.org/

[RFC2119] Scott Bradner
 Key words for use in RFCs to Indicate Requirement Levels, March 1997
 http://www.ietf.org/rfc/rfc2119.txt

[SCHEMA-0] World Wide Web Consortium
 XML Schema Part 0: Primer.
 http://www.w3.org/TR/xmlschema-0/

[SCHEMA-1] World Wide Web Consortium
 XML Schema Part 1: Structures
 http://www.w3.org/TR/xmlschema-1/

[SCHEMA-2] World Wide Web Consortium
 XML Schema Part 2: Datatypes
 http://www.w3.org/TR/xmlschema-2/

[XBRL] Phillip Engel, Walter Hamscher, Geoff Shuetrim, David vun Kannon and

Hugh Wallis
 Extensible Business Reporting Language 2.1 Recommendation
 http://www.xbrl.org/TR/2003/XBRL-Recommendation-2003-12-31.doc

[XLink] Steve DeRose, Eve Maler, and David Orchard
 XML Linking Language (XLink) Version 1.0
 http://www.w3.org/TR/xlink/

[XML] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen
 Extensible Markup Language (XML) 1.0 (Second Edition)
 http://www.w3.org/TR/rec-xml

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 41 of 42

XBRL INTERNATIONAL PUBLIC WORKING DRAFT

[XPATH] James Clark and Steve DeRose
 XML Path Language (XPath) 1.0 Specification
 http://www.w3.org/TR/xpath/

[XPATH2] Andreas Berglund et al., editors.
 XML Path Language (XPath) 2.0
 W3C Last Call Working Draft 12 November 2003
 http://www.w3.org/TR/xpath20/

[XQPFO] Ashok Malhotra, Jim Melton and Norman Walsh
 XQuery 1.0 and XPath 2.0 Functions and Operators
 W3C Last Call Working Draft 12 November 2003
 http://www.w3.org/TR/xpath-functions/

[XQuery] Scott Boag et al., editors.
 XQuery 1.0: An XML Query Language
 W3C Last Call Working Draft 12 November 2003
 http://www.w3.org/TR/xquery/

[XSLT] Michael Kay
 XML Schema Transformation Language 2.0
 W3C Last Call Working Draft 12 November 2003
 http://www.w3.org/TR/xslt20/

Appendix: Approval process (non-normative)
This section will be removed from the final recommendation.

The approval process follows XBRL International process for specifications [Processes]. This
internal working draft is a substantial revision of the public working draft of 2002-10-15 and
has restarted stage 1 after having previously reached stage 3.

Stage

(* - Current)

Party
responsible
for decision

Next step
Revisions
needed

Target date
for stage

completion

1 * Internal WD
Domain

WG Chair
Recommend for

Stage 2
Stay in Stage

1
2004-01-27

2
Internal WD
pending
publication

ISC
Approve for

Stage 3
Return to
Stage 1

2004-02-25

3
Public WD under
45 day review

WD
Editor(s)

Minor revisions
– to Stage 4

Major
revisions,

Restart Stage
1

2002-04-20

4
Public WD pending
publication

Domain
WG Chair

Recommend
for Stage 5

Restart Stage
3

2002-06-15

5
Candidate
Recommendation

ISC
Approve for

Stage 6
Restart Stage

4
2002-06-30

6 Recommendation Done

The process for approving specifications satisfying this requirements document can proceed
concurrently, although no specification can be recommended without conforming to a
requirements document that has already been recommended.

XBRL Formula Requirements, © XBRL International, Public WD 2004-04-20, Page 42 of 42

